بدائل البحث:
action optimization » reaction optimization (توسيع البحث), function optimization (توسيع البحث), codon optimization (توسيع البحث)
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
based action » based motion (توسيع البحث), based active (توسيع البحث), based fusion (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
action optimization » reaction optimization (توسيع البحث), function optimization (توسيع البحث), codon optimization (توسيع البحث)
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
based action » based motion (توسيع البحث), based active (توسيع البحث), based fusion (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
-
1
-
2
-
3
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
4
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
5
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
6
Raw Data for the Thesis: "<i>Enhancing RNAi-Based Pest Control through Effective Target Gene Selection and Optimal dsRNA Design</i>"
منشور في 2025"…</p><p><br></p><p dir="ltr">Chapter 4 introduces the dsRIP web platform (<a href="https://dsrip.uni-goettingen.de/" target="_blank">https://dsrip.uni-goettingen.de/</a>) for designing sequence-optimized dsRNA for RNAi-based pest control. In the experimental part, small interfering RNA (siRNA) features that were associated with RNAi efficacy in human cells were tested in <i>T. castaneum </i>by targeting an essential gene and measuring insecticidal efficacy. …"
-
7
Gex2SGen: Designing Drug-like Molecules from Desired Gene Expression Signatures
منشور في 2023"…Most importantly, this knowledge can be used to discover drugs’ mechanisms of action. Recently, deep learning-based drug design methods are in the spotlight due to their ability to explore huge chemical space and design property-optimized target-specific drug molecules. …"
-
8
Gex2SGen: Designing Drug-like Molecules from Desired Gene Expression Signatures
منشور في 2023"…Most importantly, this knowledge can be used to discover drugs’ mechanisms of action. Recently, deep learning-based drug design methods are in the spotlight due to their ability to explore huge chemical space and design property-optimized target-specific drug molecules. …"
-
9
Gex2SGen: Designing Drug-like Molecules from Desired Gene Expression Signatures
منشور في 2023"…Most importantly, this knowledge can be used to discover drugs’ mechanisms of action. Recently, deep learning-based drug design methods are in the spotlight due to their ability to explore huge chemical space and design property-optimized target-specific drug molecules. …"
-
10
DataSheet_1_Machine Learning Uses Chemo-Transcriptomic Profiles to Stratify Antimalarial Compounds With Similar Mode of Action.pdf
منشور في 2021"…We developed a rational gene selection approach that could identify predictive features for MoA to train and generate ML models. …"
-
11
-
12
DataSheet1_Revealing the novel ferroptosis-related therapeutic targets for diabetic foot ulcer based on the machine learning.zip
منشور في 2022"…Eventually, an optimal DFU prediction model was created by combining multiple machine learning algorithms (LASSO, SVM-RFE, Boruta, and XGBoost) to detect ferroposis genes most closely associated with DFU. …"
-
13
Pseudo Code of RBMO.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
14
P-value on CEC-2017(Dim = 30).
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
15
Memory storage behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
16
Elite search behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
17
Description of the datasets.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
18
S and V shaped transfer functions.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
19
S- and V-Type transfer function diagrams.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
20
Collaborative hunting behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"