Search alternatives:
codon optimization » wolf optimization (Expand Search)
lead optimization » global optimization (Expand Search), swarm optimization (Expand Search), whale optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based codon » based color (Expand Search), based cohort (Expand Search), based action (Expand Search)
codon optimization » wolf optimization (Expand Search)
lead optimization » global optimization (Expand Search), swarm optimization (Expand Search), whale optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based codon » based color (Expand Search), based cohort (Expand Search), based action (Expand Search)
-
1
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
2
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
3
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
4
Table5_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.XLSX
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
5
Image2_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.PNG
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
6
Table1_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.XLSX
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
7
Image1_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.PNG
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
8
Image3_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.PNG
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
9
Table3_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.XLSX
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
10
Table4_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.XLSX
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
11
Table2_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.XLSX
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
12
Image4_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.PNG
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
13
<i>hi</i>PRS algorithm process flow.
Published 2023“…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. <b>(E)</b> Starting from the interaction at the top of <i>I</i><sub><i>δ</i></sub>, <i>hi</i>PRS constructs <i>I</i><sub><i>K</i></sub>, selecting <i>K</i> (where <i>K</i> is user-specified) terms through the greedy optimization of the ratio between MI (<i>relevance</i>) and a suitable measure of similarity for interactions (<i>redundancy)</i> (cf. …”
-
14
Pseudo Code of RBMO.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
15
P-value on CEC-2017(Dim = 30).
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
16
Memory storage behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
17
Elite search behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
18
Description of the datasets.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
19
S and V shaped transfer functions.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
20
S- and V-Type transfer function diagrams.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”