بدائل البحث:
design optimization » bayesian optimization (توسيع البحث)
were optimization » before optimization (توسيع البحث), swarm optimization (توسيع البحث), whale optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
were optimization » before optimization (توسيع البحث), swarm optimization (توسيع البحث), whale optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
-
1
Table 1_A computational framework for optimizing mRNA vaccine delivery via AI-guided nanoparticle design and in silico gene expression profiling.pdf
منشور في 2025"…Parallelly, we trained a Random Forest regression model on simulated lipid nanoparticles formulations to predict immune activation values and embedded this model into a genetic algorithm to identify optimal lipid nanoparticles design parameters (size, charge, polyethylene glycol content, and targeting). …"
-
2
Presentation 1_A computational framework for optimizing mRNA vaccine delivery via AI-guided nanoparticle design and in silico gene expression profiling.pdf
منشور في 2025"…Parallelly, we trained a Random Forest regression model on simulated lipid nanoparticles formulations to predict immune activation values and embedded this model into a genetic algorithm to identify optimal lipid nanoparticles design parameters (size, charge, polyethylene glycol content, and targeting). …"
-
3
Table 2_A computational framework for optimizing mRNA vaccine delivery via AI-guided nanoparticle design and in silico gene expression profiling.pdf
منشور في 2025"…Parallelly, we trained a Random Forest regression model on simulated lipid nanoparticles formulations to predict immune activation values and embedded this model into a genetic algorithm to identify optimal lipid nanoparticles design parameters (size, charge, polyethylene glycol content, and targeting). …"
-
4
Image 1_A computational framework for optimizing mRNA vaccine delivery via AI-guided nanoparticle design and in silico gene expression profiling.png
منشور في 2025"…Parallelly, we trained a Random Forest regression model on simulated lipid nanoparticles formulations to predict immune activation values and embedded this model into a genetic algorithm to identify optimal lipid nanoparticles design parameters (size, charge, polyethylene glycol content, and targeting). …"
-
5
Image 2_A computational framework for optimizing mRNA vaccine delivery via AI-guided nanoparticle design and in silico gene expression profiling.png
منشور في 2025"…Parallelly, we trained a Random Forest regression model on simulated lipid nanoparticles formulations to predict immune activation values and embedded this model into a genetic algorithm to identify optimal lipid nanoparticles design parameters (size, charge, polyethylene glycol content, and targeting). …"
-
6
MultiCRISPR-EGA: Optimizing Guide RNA Array Design for Multiplexed CRISPR Using the Elitist Genetic Algorithm
منشور في 2025"…Computational experiments on Escherichia coli gene targets demonstrate that the EGA can rapidly optimize multiplexed gRNA arrays, outperforming other intelligent optimization algorithms in CRISPR interference (CRISPRi) applications, while the GUI provides real-time design progress control and compatibility with various CRISPR-Cas systems. …"
-
7
-
8
Table1_A depth-first search algorithm for oligonucleotide design in gene assembly.DOCX
منشور في 2022"…Then, the improved depth-first search algorithm is used according to the design principle of pruning optimization to obtain a uniform set of oligonucleotides with very close melting temperatures. …"
-
9
<i>OptRAM</i>: <i>In-silico</i> strain design via integrative regulatory-metabolic network modeling
منشور في 2019"…In this study, we developed a novel strain design algorithm, named OptRAM (<b>Opt</b>imization of <b>R</b>egulatory <b>A</b>nd <b>M</b>etabolic Networks), which can identify combinatorial optimization strategies including overexpression, knockdown or knockout of both metabolic genes and transcription factors. …"
-
10
-
11
Gex2SGen: Designing Drug-like Molecules from Desired Gene Expression Signatures
منشور في 2023الموضوعات: -
12
Gex2SGen: Designing Drug-like Molecules from Desired Gene Expression Signatures
منشور في 2023الموضوعات: -
13
Gex2SGen: Designing Drug-like Molecules from Desired Gene Expression Signatures
منشور في 2023الموضوعات: -
14
Raw Data for the Thesis: "<i>Enhancing RNAi-Based Pest Control through Effective Target Gene Selection and Optimal dsRNA Design</i>"
منشور في 2025"…</p><p><br></p><p dir="ltr">Chapter 4 introduces the dsRIP web platform (<a href="https://dsrip.uni-goettingen.de/" target="_blank">https://dsrip.uni-goettingen.de/</a>) for designing sequence-optimized dsRNA for RNAi-based pest control. …"
-
15
-
16
-
17
-
18
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
منشور في 2022"…In this study, the effects of CI and data scarcity (DS) on the performance of binary classification models were investigated using ToxCast bioassay data. …"
-
19
A* Path-Finding Algorithm to Determine Cell Connections
منشور في 2025"…</p><p dir="ltr">Astrocytes were dissociated from E18 mouse cortical tissue, and image data were processed using a Cellpose 2.0 model to mask nuclei. …"
-
20