Search alternatives:
active optimization » acid optimization (Expand Search), objective optimization (Expand Search), reaction optimization (Expand Search)
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
based active » based practice (Expand Search), based activity (Expand Search)
genes based » gene based (Expand Search), lens based (Expand Search)
active optimization » acid optimization (Expand Search), objective optimization (Expand Search), reaction optimization (Expand Search)
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
based active » based practice (Expand Search), based activity (Expand Search)
genes based » gene based (Expand Search), lens based (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
Table 1_A computational framework for optimizing mRNA vaccine delivery via AI-guided nanoparticle design and in silico gene expression profiling.pdf
Published 2025“…Differential gene expression analysis identified compartment-specific transcriptional responses, which were then used to construct a risk index based on predicted immune activation and the number of upregulated immune markers. …”
-
12
Presentation 1_A computational framework for optimizing mRNA vaccine delivery via AI-guided nanoparticle design and in silico gene expression profiling.pdf
Published 2025“…Differential gene expression analysis identified compartment-specific transcriptional responses, which were then used to construct a risk index based on predicted immune activation and the number of upregulated immune markers. …”
-
13
Table 2_A computational framework for optimizing mRNA vaccine delivery via AI-guided nanoparticle design and in silico gene expression profiling.pdf
Published 2025“…Differential gene expression analysis identified compartment-specific transcriptional responses, which were then used to construct a risk index based on predicted immune activation and the number of upregulated immune markers. …”
-
14
Image 1_A computational framework for optimizing mRNA vaccine delivery via AI-guided nanoparticle design and in silico gene expression profiling.png
Published 2025“…Differential gene expression analysis identified compartment-specific transcriptional responses, which were then used to construct a risk index based on predicted immune activation and the number of upregulated immune markers. …”
-
15
Image 2_A computational framework for optimizing mRNA vaccine delivery via AI-guided nanoparticle design and in silico gene expression profiling.png
Published 2025“…Differential gene expression analysis identified compartment-specific transcriptional responses, which were then used to construct a risk index based on predicted immune activation and the number of upregulated immune markers. …”
-
16
MultiCRISPR-EGA: Optimizing Guide RNA Array Design for Multiplexed CRISPR Using the Elitist Genetic Algorithm
Published 2025“…Recognizing that more stable gRNAs, characterized by lower minimum free energy (MFE), have prolonged activity and thus higher efficacy, we developed MultiCRISPR-EGA, a graphical user interface (GUI)-based tool that employs the Elitist Genetic Algorithm (EGA) to design optimized single-promoter-driven multiplexed gRNA arrays. …”
-
17
Stochastic simulation and statistical inference platform for visualization and estimation of transcriptional kinetics
Published 2020“…As a demonstration, we show that the optimization algorithm can successfully recover the transcriptional kinetics of simulated and experimental gene expression data. …”
-
18
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
Published 2025“…By integrating Latent Encoder Coupled Generative Adversarial Network (LEGAN) optimized with Binary Emperor Penguin optimizer (BEPO), the scheme enhances routing efficiency and security. …”
-
19
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
20