Search alternatives:
codon optimization » wolf optimization (Expand Search)
joint optimization » policy optimization (Expand Search), wolf optimization (Expand Search), model optimization (Expand Search)
genes based » gene based (Expand Search), lens based (Expand Search)
based codon » based color (Expand Search), based cohort (Expand Search), based action (Expand Search)
codon optimization » wolf optimization (Expand Search)
joint optimization » policy optimization (Expand Search), wolf optimization (Expand Search), model optimization (Expand Search)
genes based » gene based (Expand Search), lens based (Expand Search)
based codon » based color (Expand Search), based cohort (Expand Search), based action (Expand Search)
-
1
-
2
-
3
Table5_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.XLSX
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
4
Image2_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.PNG
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
5
Table1_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.XLSX
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
6
Image1_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.PNG
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
7
Image3_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.PNG
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
8
Table3_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.XLSX
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
9
Table4_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.XLSX
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
10
Table2_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.XLSX
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
11
Image4_gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm.PNG
Published 2023“…For instance, generated S<sub>ij</sub> weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. …”
-
12
Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes
Published 2022“…We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …”
-
13
Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods
Published 2022“…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …”
-
14
-
15
-
16
-
17
-
18
-
19