بدائل البحث:
codon optimization » wolf optimization (توسيع البحث)
from optimization » fox optimization (توسيع البحث), swarm optimization (توسيع البحث), after optimization (توسيع البحث)
genes based » gene based (توسيع البحث), lens based (توسيع البحث)
based from » based food (توسيع البحث), used from (توسيع البحث), based arm (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a codon » _ codon (توسيع البحث), a common (توسيع البحث)
codon optimization » wolf optimization (توسيع البحث)
from optimization » fox optimization (توسيع البحث), swarm optimization (توسيع البحث), after optimization (توسيع البحث)
genes based » gene based (توسيع البحث), lens based (توسيع البحث)
based from » based food (توسيع البحث), used from (توسيع البحث), based arm (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a codon » _ codon (توسيع البحث), a common (توسيع البحث)
-
1
-
2
Optimal ALARM BN discovered by CausNet.
منشور في 2025"…Our ‘partial generational orderings’ based method CausNet-partial is an efficient and scalable method for finding optimal sparse and small Bayesian networks from high dimensional data.…"
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
Image_1_Identification of a Novel Prognostic Signature for Gastric Cancer Based on Multiple Level Integration and Global Network Optimization.TIF
منشور في 2021"…Many prognostic signatures from genes and non-coding RNA (ncRNA) levels have been identified by high-throughput expression profiling for GC. …"
-
12
-
13
Table1_Identification of biomarkers for hepatocellular carcinoma based on single cell sequencing and machine learning algorithms.DOCX
منشور في 2022"…Compared with traditional bulk RNA-seq, single-cell RNA sequencing (scRNA-seq) enables the transcriptomes of a great deal of individual cells assayed in an unbiased manner, showing the potential to deeply reveal tumor heterogeneity. In this study, based on the scRNA-seq results of primary neoplastic cells and paired normal liver cells from eight HCC patients, a new strategy of machine learning algorithms was applied to screen core biomarkers that distinguished HCC tumor tissues from the adjacent normal liver. …"
-
14
-
15
Table3_Comprehensive analysis of the progression mechanisms of CRPC and its inhibitor discovery based on machine learning algorithms.XLSX
منشور في 2023"…</p><p>Methods: We collected three microarray datasets (GSE32269, GSE74367, and GSE66187) from the Gene Expression Omnibus (GEO) database for CRPC. …"
-
16
Table2_Comprehensive analysis of the progression mechanisms of CRPC and its inhibitor discovery based on machine learning algorithms.XLSX
منشور في 2023"…</p><p>Methods: We collected three microarray datasets (GSE32269, GSE74367, and GSE66187) from the Gene Expression Omnibus (GEO) database for CRPC. …"
-
17
Table1_Comprehensive analysis of the progression mechanisms of CRPC and its inhibitor discovery based on machine learning algorithms.XLSX
منشور في 2023"…</p><p>Methods: We collected three microarray datasets (GSE32269, GSE74367, and GSE66187) from the Gene Expression Omnibus (GEO) database for CRPC. …"
-
18
<i>In silico</i> prediction of blood cholesterol levels from genotype data
منشور في 2020"…<div><p>In this work we present a framework for blood cholesterol levels prediction from genotype data. The predictor is based on an algorithm for cholesterol metabolism simulation available in literature, implemented and optimized by our group in the R language. …"
-
19
-
20