بدائل البحث:
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), wolf optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
genes based » gene based (توسيع البحث), lens based (توسيع البحث)
tasks based » task based (توسيع البحث), cases based (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), wolf optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
genes based » gene based (توسيع البحث), lens based (توسيع البحث)
tasks based » task based (توسيع البحث), cases based (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
9
-
10
-
11
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
12
-
13
-
14
-
15
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
16
-
17
-
18
-
19
Table 1_A computational framework for optimizing mRNA vaccine delivery via AI-guided nanoparticle design and in silico gene expression profiling.pdf
منشور في 2025"…Parallelly, we trained a Random Forest regression model on simulated lipid nanoparticles formulations to predict immune activation values and embedded this model into a genetic algorithm to identify optimal lipid nanoparticles design parameters (size, charge, polyethylene glycol content, and targeting). …"
-
20
Presentation 1_A computational framework for optimizing mRNA vaccine delivery via AI-guided nanoparticle design and in silico gene expression profiling.pdf
منشور في 2025"…Parallelly, we trained a Random Forest regression model on simulated lipid nanoparticles formulations to predict immune activation values and embedded this model into a genetic algorithm to identify optimal lipid nanoparticles design parameters (size, charge, polyethylene glycol content, and targeting). …"