Showing 21 - 40 results of 219 for search '(( genes based process optimization algorithm ) OR ( binary a while optimization algorithm ))', query time: 0.58s Refine Results
  1. 21

    The performance of classifiers. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
  2. 22
  3. 23

    Image_2_A two-stage hybrid gene selection algorithm combined with machine learning models to predict the rupture status in intracranial aneurysms.TIF by Qingqing Li (1505614)

    Published 2022
    “…First, we used the Fast Correlation-Based Filter (FCBF) algorithm to filter a large number of irrelevant and redundant genes in the raw dataset, and then used the wrapper feature selection method based on the he Multi-layer Perceptron (MLP) neural network and the Particle Swarm Optimization (PSO), accuracy (ACC) and mean square error (MSE) were then used as the evaluation criteria. …”
  4. 24

    Image_1_A two-stage hybrid gene selection algorithm combined with machine learning models to predict the rupture status in intracranial aneurysms.TIF by Qingqing Li (1505614)

    Published 2022
    “…First, we used the Fast Correlation-Based Filter (FCBF) algorithm to filter a large number of irrelevant and redundant genes in the raw dataset, and then used the wrapper feature selection method based on the he Multi-layer Perceptron (MLP) neural network and the Particle Swarm Optimization (PSO), accuracy (ACC) and mean square error (MSE) were then used as the evaluation criteria. …”
  5. 25

    Image_3_A two-stage hybrid gene selection algorithm combined with machine learning models to predict the rupture status in intracranial aneurysms.TIF by Qingqing Li (1505614)

    Published 2022
    “…First, we used the Fast Correlation-Based Filter (FCBF) algorithm to filter a large number of irrelevant and redundant genes in the raw dataset, and then used the wrapper feature selection method based on the he Multi-layer Perceptron (MLP) neural network and the Particle Swarm Optimization (PSO), accuracy (ACC) and mean square error (MSE) were then used as the evaluation criteria. …”
  6. 26
  7. 27
  8. 28

    MultiCRISPR-EGA: Optimizing Guide RNA Array Design for Multiplexed CRISPR Using the Elitist Genetic Algorithm by Yangyu Zhang (4609117)

    Published 2025
    “…Computational experiments on Escherichia coli gene targets demonstrate that the EGA can rapidly optimize multiplexed gRNA arrays, outperforming other intelligent optimization algorithms in CRISPR interference (CRISPRi) applications, while the GUI provides real-time design progress control and compatibility with various CRISPR-Cas systems. …”
  9. 29

    Data_Sheet_1_Posiform planting: generating QUBO instances for benchmarking.pdf by Georg Hahn (12530469)

    Published 2023
    “…<p>We are interested in benchmarking both quantum annealing and classical algorithms for minimizing quadratic unconstrained binary optimization (QUBO) problems. …”
  10. 30
  11. 31

    Datasets and their properties. by Olaide N. Oyelade (14047002)

    Published 2023
    “…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”
  12. 32

    Parameter settings. by Olaide N. Oyelade (14047002)

    Published 2023
    “…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”
  13. 33

    Raw Data for the Thesis: "<i>Enhancing RNAi-Based Pest Control through Effective Target Gene Selection and Optimal dsRNA Design</i>" by Doga CEDDEN (12675286)

    Published 2025
    “…The chapter argues that unbiased, screen-based approaches outperform hypothesis-driven gene selection due to the unpredictable influence of cellular processes on RNAi efficacy. …”
  14. 34
  15. 35
  16. 36
  17. 37
  18. 38
  19. 39

    FDR (). by Nand Sharma (21519845)

    Published 2025
    Subjects:
  20. 40

    FDR (). by Nand Sharma (21519845)

    Published 2025
    Subjects: