يعرض 1 - 20 نتائج من 41 نتيجة بحث عن '(( hilary a policy optimization algorithm ) OR ( binary based complex optimization algorithm ))', وقت الاستعلام: 0.29s تنقيح النتائج
  1. 1

    DE algorithm flow. حسب Ling Zhao (111365)

    منشور في 2025
    "…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
  2. 2

    Test results of different algorithms. حسب Ling Zhao (111365)

    منشور في 2025
    "…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
  3. 3
  4. 4
  5. 5

    Proposed Algorithm. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  6. 6

    Comparisons between ADAM and NADAM optimizers. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  7. 7
  8. 8

    Plan frame of the house. حسب Ling Zhao (111365)

    منشور في 2025
    "…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
  9. 9

    Ablation test results. حسب Ling Zhao (111365)

    منشور في 2025
    "…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
  10. 10

    Hyperparameter selection test. حسب Ling Zhao (111365)

    منشور في 2025
    "…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
  11. 11

    Multiple index test results of different methods. حسب Ling Zhao (111365)

    منشور في 2025
    "…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
  12. 12

    Backtracking strategy diagram. حسب Ling Zhao (111365)

    منشور في 2025
    "…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
  13. 13

    Comparison of differences in literature methods. حسب Ling Zhao (111365)

    منشور في 2025
    "…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
  14. 14

    New building interior space layout model flow. حسب Ling Zhao (111365)

    منشور في 2025
    "…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
  15. 15

    Schematic of iteration process of IDE-IIGA. حسب Ling Zhao (111365)

    منشور في 2025
    "…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
  16. 16

    Schematic diagram of IGA chromosome coding. حسب Ling Zhao (111365)

    منشور في 2025
    "…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
  17. 17

    The Pseudo-Code of the IRBMO Algorithm. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
  18. 18

    IRBMO vs. meta-heuristic algorithms boxplot. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
  19. 19

    IRBMO vs. feature selection algorithm boxplot. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
  20. 20

    An Example of a WPT-MEC Network. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"