Search alternatives:
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
values decrease » values increased (Expand Search)
linear decrease » linear increase (Expand Search)
laser decrease » larger decrease (Expand Search), water decreases (Expand Search), teer decrease (Expand Search)
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
values decrease » values increased (Expand Search)
linear decrease » linear increase (Expand Search)
laser decrease » larger decrease (Expand Search), water decreases (Expand Search), teer decrease (Expand Search)
-
41
-
42
-
43
-
44
-
45
Linear covariate analysis of prognostically significant metabolites. Presenting the effect sizes of metabolites that showed significant differences among prognostic groups in ICU-treated COVID-19 patients. Metabolites were included based on an F-value > 2.5 and a p-value < 0.05. Metabolites marked with a single asterisk (*) were significant in both two-way ANOVA and ASCA, whereas those marked with double asterisks (**) were significant only in two-way ANOVA. Positive effect sizes indicate an increase in metabolite concentration between the compared groups, while negative values indicate a decrease.
Published 2025“…Positive effect sizes indicate an increase in metabolite concentration between the compared groups, while negative values indicate a decrease.</p>…”
-
46
-
47
-
48
-
49
-
50
-
51
-
52
<b>Supporting data for manuscript</b> "<b>Voluntary locomotion induces an early and remote hemodynamic decrease in the large cerebral veins</b>"
Published 2025“…<p dir="ltr">The CSV file 'Eyreetal_DrainingVein_SourceData' contains the averaged time series traces and extracted metrics from individual experiments used across Figures 1-5 in the manuscript "Voluntary locomotion induces an early and remote hemodynamic decrease in the large cerebral veins". …”
-
53
-
54
-
55
-
56
-
57
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
58
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
59
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
60
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”