Showing 2,361 - 2,380 results of 129,890 for search '(( i e decrease ) OR ( 5 ((((step decrease) OR (mean decrease))) OR (a decrease)) ))', query time: 2.16s Refine Results
  1. 2361

    The mean retention performance of uninfected <i>Rhodnius prolixus</i> at different triatomine developmental stages and ambient temperatures. by Henri Loshouarn (17896676)

    Published 2024
    “…Additionally, retention performance decreased with developmental stages (p < 2e-16). Error bars represent the standard error of the mean.…”
  2. 2362
  3. 2363

    The thromboxane analogue, U-46619 decreased vessel diameter. by Simon C. Watkins (39900)

    Published 2012
    “…Changes in aortic flow velocity (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0044018#pone-0044018-g005" target="_blank">Figure 5</a>) in response to U-46619 in the 5 dpf embryos, were accompanied by decreases in vessel diameter (<b>E</b>, n = 5, <i>P</i><0.05). χ denotes statistical differences from baseline (time 0).…”
  4. 2364
  5. 2365
  6. 2366
  7. 2367
  8. 2368

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  9. 2369

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  10. 2370

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  11. 2371

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  12. 2372

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  13. 2373

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  14. 2374

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  15. 2375

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  16. 2376

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  17. 2377
  18. 2378

    Nur77 knockdown decreases cell viability and proliferation. by Alexa Tenga (2161780)

    Published 2016
    “…These images correspond to the data in C. Data shown in A are representative of 5 independent experiments; data in B are representative of 4 independent experiments, and data in C and E are representative of 2 independent experiments. …”
  19. 2379

    Que decreases the number of infiltrating T cells in spinal cord. by Feng Mei (143817)

    Published 2012
    “…<b>E–G</b>: CD8<sup>+</sup> cells display a similar decrease after Que treatment (N = 5, *, <i>p<</i>0.05), but the overall extent of CD8<sup>+</sup> cells detected was much less than that of CD4<sup>+</sup> cells. …”
  20. 2380

    GSK343 decreased neuroblastoma viability, proliferation, and motility. by Laura V. Bownes (10276762)

    Published 2021
    “…<p>(A) SK-N-AS, SK-N-BE(2), SH-EP and WAC(2) cells (1.5 × 10<sup>3</sup> cells) were treated with increasing concentrations of GSK343 (0, 5, 15, 25 μM) for 24 hours and viability was measured using alamarBlue<sup>®</sup> assay. …”