Search alternatives:
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
small decrease » small increased (Expand Search)
gen decrease » mean decrease (Expand Search), we decrease (Expand Search), gain decreased (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
_ largest » _ large (Expand Search)
i gen » i gene (Expand Search)
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
small decrease » small increased (Expand Search)
gen decrease » mean decrease (Expand Search), we decrease (Expand Search), gain decreased (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
_ largest » _ large (Expand Search)
i gen » i gene (Expand Search)
-
1
-
2
-
3
Data and code from: Continental declines in North American small mammal populations
Published 2025Subjects: -
4
-
5
-
6
-
7
-
8
Univariate and Multivariate analysis of risk factors for nerve injury 90-days after TKA.
Published 2025Subjects: -
9
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
-
10
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
-
11
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
-
12
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
-
13
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
-
14
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
-
15
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
-
16
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
-
17
-
18
-
19
-
20