Showing 1 - 20 results of 11,040 for search '(( i largest decrease ) OR ((( _ parent decrease ) OR ( _ ((we decrease) OR (nn decrease)) ))))', query time: 0.76s Refine Results
  1. 1

    The introduction of mutualisms into assembled communities increases their connectance and complexity while decreasing their richness. by Gui Araujo (22170819)

    Published 2025
    “…<p>Using the invasion model, we investigate the effect of switching on and off (black vs grey) invasions with mutualisms halfway through the simulation (i.e. after 500 assembly events). …”
  2. 2
  3. 3
  4. 4

    Proteomic Plasticity in the Coral Montipora capitata Gamete Bundles after Parent Thermal Bleaching by Emma B. Timmins-Schiffman (4349209)

    Published 2025
    “…Proteomics is a crucial tool for understanding coral function and tolerance to thermal stress, as proteins drive physiological processes and accurately represent cell functional phenotypes. We examined the physiological condition of coral (Montipora capitata) gametes from parents that either experienced thermal bleaching or were nonbleached controls by comparing data dependent (DDA) and data independent (DIA) acquisition methods and peptide quantification (spectral counting and area-under-the-curve, AUC) strategies. …”
  5. 5

    Proteomic Plasticity in the Coral Montipora capitata Gamete Bundles after Parent Thermal Bleaching by Emma B. Timmins-Schiffman (4349209)

    Published 2025
    “…Proteomics is a crucial tool for understanding coral function and tolerance to thermal stress, as proteins drive physiological processes and accurately represent cell functional phenotypes. We examined the physiological condition of coral (Montipora capitata) gametes from parents that either experienced thermal bleaching or were nonbleached controls by comparing data dependent (DDA) and data independent (DIA) acquisition methods and peptide quantification (spectral counting and area-under-the-curve, AUC) strategies. …”
  6. 6

    Proteomic Plasticity in the Coral Montipora capitata Gamete Bundles after Parent Thermal Bleaching by Emma B. Timmins-Schiffman (4349209)

    Published 2025
    “…Proteomics is a crucial tool for understanding coral function and tolerance to thermal stress, as proteins drive physiological processes and accurately represent cell functional phenotypes. We examined the physiological condition of coral (Montipora capitata) gametes from parents that either experienced thermal bleaching or were nonbleached controls by comparing data dependent (DDA) and data independent (DIA) acquisition methods and peptide quantification (spectral counting and area-under-the-curve, AUC) strategies. …”
  7. 7

    Proteomic Plasticity in the Coral Montipora capitata Gamete Bundles after Parent Thermal Bleaching by Emma B. Timmins-Schiffman (4349209)

    Published 2025
    “…Proteomics is a crucial tool for understanding coral function and tolerance to thermal stress, as proteins drive physiological processes and accurately represent cell functional phenotypes. We examined the physiological condition of coral (Montipora capitata) gametes from parents that either experienced thermal bleaching or were nonbleached controls by comparing data dependent (DDA) and data independent (DIA) acquisition methods and peptide quantification (spectral counting and area-under-the-curve, AUC) strategies. …”
  8. 8

    Proteomic Plasticity in the Coral Montipora capitata Gamete Bundles after Parent Thermal Bleaching by Emma B. Timmins-Schiffman (4349209)

    Published 2025
    “…Proteomics is a crucial tool for understanding coral function and tolerance to thermal stress, as proteins drive physiological processes and accurately represent cell functional phenotypes. We examined the physiological condition of coral (Montipora capitata) gametes from parents that either experienced thermal bleaching or were nonbleached controls by comparing data dependent (DDA) and data independent (DIA) acquisition methods and peptide quantification (spectral counting and area-under-the-curve, AUC) strategies. …”
  9. 9

    Proteomic Plasticity in the Coral Montipora capitata Gamete Bundles after Parent Thermal Bleaching by Emma B. Timmins-Schiffman (4349209)

    Published 2025
    “…Proteomics is a crucial tool for understanding coral function and tolerance to thermal stress, as proteins drive physiological processes and accurately represent cell functional phenotypes. We examined the physiological condition of coral (Montipora capitata) gametes from parents that either experienced thermal bleaching or were nonbleached controls by comparing data dependent (DDA) and data independent (DIA) acquisition methods and peptide quantification (spectral counting and area-under-the-curve, AUC) strategies. …”
  10. 10

    Proteomic Plasticity in the Coral Montipora capitata Gamete Bundles after Parent Thermal Bleaching by Emma B. Timmins-Schiffman (4349209)

    Published 2025
    “…Proteomics is a crucial tool for understanding coral function and tolerance to thermal stress, as proteins drive physiological processes and accurately represent cell functional phenotypes. We examined the physiological condition of coral (Montipora capitata) gametes from parents that either experienced thermal bleaching or were nonbleached controls by comparing data dependent (DDA) and data independent (DIA) acquisition methods and peptide quantification (spectral counting and area-under-the-curve, AUC) strategies. …”
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    <b>Nest mass in forest tits </b><b><i>Paridae</i></b><b> </b><b>increases with elevation and decreasing body mass, promoting reproductive success</b> by Clara Wild (19246606)

    Published 2025
    “…Nest boxes were installed along an elevational gradient of approximately 1000 m a.sl., either in forest gaps with fluctuating microclimatic conditions or in closed forests with buffered microclimates. We found that nest mass increased by ~ 60% along the elevational gradient, but the effect of canopy openness on nest mass was not significant, while nest mass decreased along the ranked species from the smallest <i>Periparus ater</i> to the medium-sized <i>Cyanistes caeruleus</i> and the largest <i>Parus major</i>. …”
  18. 18
  19. 19
  20. 20