Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
i step » _ step (Expand Search), a step (Expand Search), 2 step (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
i step » _ step (Expand Search), a step (Expand Search), 2 step (Expand Search)
-
14021
-
14022
-
14023
Relative mean outbreak size reduction 1 − 〈Ω(<i>a</i> = 30%)〉/〈Ω(<i>a</i> = 0)〉 caused by DCT in different network topologies.
Published 2022“…<p>App participation was fixed at <i>a</i> = 30%, and symptom-based testing was assumed to lead to initial under-ascertainment factors of <i>UA</i><sub>0</sub> ∈ {12, 4, 2.4} (<i>q</i> = 0.1, 0.3 and 0.5, respectively). …”
-
14024
Integrin β4, αV, α5 and β3, were differentially regulated among the three cell lines in response to glucose.
Published 2014“…Integrin α-V was significantly decreased under hypoglycemia only in MDA-MB-231P cells p = 0.001. …”
-
14025
-
14026
Active spread of mtDNAs in the network can increase and decrease cell-to-cell variability from cell divisions.
Published 2023“…Rows show different values of initial mutant proportion, with <i>h</i> = 0.1 in the top row and <i>h</i> = 0.5 in the bottom row. The three columns for each panel give decreasing network heterogeneity, expressed via different seed numbers, 4, 16 and 64 (more seed points give a more homogeneous network). …”
-
14027
-
14028
-
14029
-
14030
-
14031
Fig 5 -
Published 2024“…(C) Aspect ratio of the bud produced. Case 1 represents the scenario where the scaling factor <i>n</i> starts with 5 and increase to 12 in 5×10<sup>3</sup> simulation time steps, and then decrease to 7 in 5×10<sup>3</sup> simulation time steps. …”
-
14032
Table_5_Genetic Adaptation of a Mevalonate Pathway Deficient Mutant in Staphylococcus aureus.DOCX
Published 2018“…During that time, it acquired two point mutations: One mutation in the coding region of the regulator gene spx, which resulted in an amino acid exchange that decreased Spx function. …”
-
14033
Image_5_Genetic Adaptation of a Mevalonate Pathway Deficient Mutant in Staphylococcus aureus.PDF
Published 2018“…During that time, it acquired two point mutations: One mutation in the coding region of the regulator gene spx, which resulted in an amino acid exchange that decreased Spx function. …”
-
14034
A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation
Published 2020“…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
-
14035
A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation
Published 2020“…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
-
14036
A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation
Published 2020“…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
-
14037
A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation
Published 2020“…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
-
14038
A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation
Published 2020“…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
-
14039
A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation
Published 2020“…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
-
14040
A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation
Published 2020“…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”