Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
wt decrease » we decrease (Expand Search), _ decrease (Expand Search), nn decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
i wt » _ wt (Expand Search), i w (Expand Search), i et (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
wt decrease » we decrease (Expand Search), _ decrease (Expand Search), nn decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
i wt » _ wt (Expand Search), i w (Expand Search), i et (Expand Search)
-
101961
Table_1_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.DOCX
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
101962
Table_3_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
101963
<i>In vitro</i> cardiomyocyte function in saline/RA and LPS/O<sub>2</sub> exposed mice at 8 weeks of age.
Published 2013“…<p>(A) % Peak shortening (% PS) was increased in the LPS/RA exposed mice. …”
-
101964
Table_6_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
101965
Data_Sheet_2_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
101966
Table_2_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
101967
Data_Sheet_4_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.XLSX
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
101968
Data_Sheet_6_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
101969
Table_4_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
101970
Table_7_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
101971
Data_Sheet_1_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
101972
Data_Sheet_3_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.XLSX
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
101973
<b>Gene x environment interactions as drivers of lifespan variation in nematodes</b>
Published 2025“…Healthspan (measured as worm activity) generally decreased with age, but in different ways for different genetic strains. …”
-
101974
DataSheet_1_Increased PD-1+Foxp3+ γδ T cells associate with poor overall survival for patients with acute myeloid leukemia.pdf
Published 2022“…</p>Results<p>We found that PD-1 gene was positively correlated with FOXP3 gene and highly co-expressed PD-1 and FOXP3 genes were associated with poor overall survival (OS) from TCGA database. Then, we detected a skewed distribution of γδ T cells with increased Vδ1 and decreased Vδ2 T cell subsets in AML. …”
-
101975
-
101976
Table3_Association between OPG polymorphisms and osteoporosis risk: An updated meta-analysis.docx
Published 2022“…At the same time, the OPG G1181C polymorphism reduces the risk of osteoporosis (C vs G: OR = 0.84, 95% CI = 0.74–0.95; CC vs GG: OR = 0.75, 95% CI = 0.60–0.93; GC + CC vs GG: OR = 0.80, 95% CI = 0.67–0.95; CC vs GG + GC: OR = 0.84, 95% CI = 0.70–1.00). Moreover, a significantly decreased risk of osteoporosis was also discovered in Asian (C vs G: OR = 0.80, 95% CI = 0.66–0.98; CC vs GG: OR = 0.67, 95% CI = 0.47–0.95; GC + CC vs GG: OR = 0.74, 95% CI = 0.58–0.95) and the female (C vs G: OR = 0.85, 95% CI = 0.75–0.97; CC vs GG: OR = 0.77, 95% CI = 0.61–0.96; GC + CC vs GG: OR = 0.79, 95% CI = 0.66–0.95). …”
-
101977
-
101978
-
101979
Table1_Association between OPG polymorphisms and osteoporosis risk: An updated meta-analysis.docx
Published 2022“…At the same time, the OPG G1181C polymorphism reduces the risk of osteoporosis (C vs G: OR = 0.84, 95% CI = 0.74–0.95; CC vs GG: OR = 0.75, 95% CI = 0.60–0.93; GC + CC vs GG: OR = 0.80, 95% CI = 0.67–0.95; CC vs GG + GC: OR = 0.84, 95% CI = 0.70–1.00). Moreover, a significantly decreased risk of osteoporosis was also discovered in Asian (C vs G: OR = 0.80, 95% CI = 0.66–0.98; CC vs GG: OR = 0.67, 95% CI = 0.47–0.95; GC + CC vs GG: OR = 0.74, 95% CI = 0.58–0.95) and the female (C vs G: OR = 0.85, 95% CI = 0.75–0.97; CC vs GG: OR = 0.77, 95% CI = 0.61–0.96; GC + CC vs GG: OR = 0.79, 95% CI = 0.66–0.95). …”
-
101980
Table2_Association between OPG polymorphisms and osteoporosis risk: An updated meta-analysis.docx
Published 2022“…At the same time, the OPG G1181C polymorphism reduces the risk of osteoporosis (C vs G: OR = 0.84, 95% CI = 0.74–0.95; CC vs GG: OR = 0.75, 95% CI = 0.60–0.93; GC + CC vs GG: OR = 0.80, 95% CI = 0.67–0.95; CC vs GG + GC: OR = 0.84, 95% CI = 0.70–1.00). Moreover, a significantly decreased risk of osteoporosis was also discovered in Asian (C vs G: OR = 0.80, 95% CI = 0.66–0.98; CC vs GG: OR = 0.67, 95% CI = 0.47–0.95; GC + CC vs GG: OR = 0.74, 95% CI = 0.58–0.95) and the female (C vs G: OR = 0.85, 95% CI = 0.75–0.97; CC vs GG: OR = 0.77, 95% CI = 0.61–0.96; GC + CC vs GG: OR = 0.79, 95% CI = 0.66–0.95). …”