يعرض 221 - 240 نتائج من 819 نتيجة بحث عن '(( learning ((e decrease) OR (we decrease)) ) OR ( ct ((values decrease) OR (largest decrease)) ))', وقت الاستعلام: 0.55s تنقيح النتائج
  1. 221

    Imbalanced Dataset Distribution. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  2. 222

    Data Preprocessing Steps for IDC Dataset. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  3. 223

    Flowchart of Proposed SMO_CNN. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  4. 224

    IDC Breast Cancer Dataset Descriptions. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  5. 225

    Accuracy Graph. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  6. 226

    Loss Graph. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  7. 227

    Hyperparameter Tuning of the Proposed Model. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  8. 228

    Comparison of Accuracy Metric. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  9. 229

    ROC Curve for the Best Model (AUC = 0.92). حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  10. 230

    Sampling Images of IDC Dataset. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  11. 231

    CNN Model Layers Summary. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  12. 232

    Training Data/Validation/Test. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  13. 233

    CNN Model Architecture. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  14. 234

    Impressive accuracy data. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  15. 235

    Performance Results of Proposed SMO_CNN Model. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  16. 236

    Balanced Dataset Distribution. حسب Mudhafar Jalil Jassim Ghrabat (22177655)

    منشور في 2025
    "…This work explores the capability of deep learning to extract characteristics from histopathology photos of breast cancer. …"
  17. 237

    Supplementary Material for: The value of circulating tumor DNA in the prognostic diagnosis of bladder cancer: a systematic review and meta-analysis حسب figshare admin karger (2628495)

    منشور في 2025
    "…Conclusion: ctDNA demonstrates some clinical application value in the prognostic assessment of bladder cancer, and can assist in predicting patient recurrence and survival. …"
  18. 238
  19. 239

    Table1_Predicting the solubility of CO2 and N2 in ionic liquids based on COSMO-RS and machine learning.xlsx حسب Hongling Qin (5557505)

    منشور في 2024
    "…To further improve the performance of COSMO-RS, two options were used, i.e., the polynomial expression to correct the COSMO-RS results and the combination of COSMO-RS and machine learning algorithms (eXtreme Gradient Boosting, XGBoost) to develop a hybrid model. …"
  20. 240

    Predicting Dinitrogen Activation and Coupling with Carbon Dioxide and Other Small Molecules by Methyleneborane: A Combined DFT and Machine Learning Study حسب Feiying You (22119041)

    منشور في 2025
    "…Machine learning analysis suggests that increasing the HOMO–LUMO gap or the charge on the boron atom or decreasing the charge of the nitrogen atom will reduce the reaction energies. …"