Search alternatives:
learning optimization » learning motivation (Expand Search), lead optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
lens » less (Expand Search)
learning optimization » learning motivation (Expand Search), lead optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
lens » less (Expand Search)
-
1
Lens imaging opposition-based learning.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
2
-
3
Compare algorithm parameter settings.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
4
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
-
5
-value on CEC2022 (dim = 20).
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
6
Precision elimination strategy.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
7
Results of low-light image enhancement test.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
8
-value on 23 benchmark functions (dim = 30).
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
9
Evaluation metrics obtained by SBOA and MESBOA.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
10
Image4_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF
Published 2022“…<p>We present a novel deep learning-based quantification pipeline for the analysis of cell culture images acquired by lens-free microscopy. …”
-
11
Image1_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF
Published 2022“…<p>We present a novel deep learning-based quantification pipeline for the analysis of cell culture images acquired by lens-free microscopy. …”
-
12
Image3_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF
Published 2022“…<p>We present a novel deep learning-based quantification pipeline for the analysis of cell culture images acquired by lens-free microscopy. …”
-
13
Image2_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF
Published 2022“…<p>We present a novel deep learning-based quantification pipeline for the analysis of cell culture images acquired by lens-free microscopy. …”
-
14
DataSheet1_CNN-Based Cell Analysis: From Image to Quantitative Representation.pdf
Published 2022“…<p>We present a novel deep learning-based quantification pipeline for the analysis of cell culture images acquired by lens-free microscopy. …”
-
15
-
16
-
17
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
Published 2024“…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
-
18
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
Published 2025“…Machine learning regression algorithms were trained to predict betalain accumulation from digital images, outperforming classic spectroradiometer measurements. …”
-
19
Minisymposterium: Muq-Hippylib: A Bayesian Inference Software Framework Integrating Data with Complex Predictive Models under Uncertainty
Published 2021“…The central questions are: How do we optimally learn from data through the lens of models? …”
-
20
SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
Published 2020“…The central questions are: How do we optimally learn from data through the lens of models? …”