Showing 1 - 20 results of 21 for search '(( lens based learning optimization algorithm ) OR ( binary image wolf optimization algorithm ))', query time: 0.65s Refine Results
  1. 1

    Lens imaging opposition-based learning. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  2. 2
  3. 3

    Compare algorithm parameter settings. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  4. 4

    Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm by Hussein Ali Bardan (21976208)

    Published 2025
    “…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
  5. 5

    -value on CEC2022 (dim = 20). by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  6. 6

    Precision elimination strategy. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  7. 7

    Results of low-light image enhancement test. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  8. 8

    -value on 23 benchmark functions (dim = 30). by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  9. 9

    Evaluation metrics obtained by SBOA and MESBOA. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  10. 10

    Image4_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF by Cédric Allier (4180903)

    Published 2022
    “…<p>We present a novel deep learning-based quantification pipeline for the analysis of cell culture images acquired by lens-free microscopy. …”
  11. 11

    Image1_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF by Cédric Allier (4180903)

    Published 2022
    “…<p>We present a novel deep learning-based quantification pipeline for the analysis of cell culture images acquired by lens-free microscopy. …”
  12. 12

    Image3_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF by Cédric Allier (4180903)

    Published 2022
    “…<p>We present a novel deep learning-based quantification pipeline for the analysis of cell culture images acquired by lens-free microscopy. …”
  13. 13

    Image2_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF by Cédric Allier (4180903)

    Published 2022
    “…<p>We present a novel deep learning-based quantification pipeline for the analysis of cell culture images acquired by lens-free microscopy. …”
  14. 14

    DataSheet1_CNN-Based Cell Analysis: From Image to Quantitative Representation.pdf by Cédric Allier (4180903)

    Published 2022
    “…<p>We present a novel deep learning-based quantification pipeline for the analysis of cell culture images acquired by lens-free microscopy. …”
  15. 15
  16. 16
  17. 17

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf by Muhammad Awais (263096)

    Published 2024
    “…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
  18. 18

    <b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043) by Erola Fenollosa (20977421)

    Published 2025
    “…Machine learning regression algorithms were trained to predict betalain accumulation from digital images, outperforming classic spectroradiometer measurements. …”
  19. 19

    Minisymposterium: Muq-Hippylib: A Bayesian Inference Software Framework Integrating Data with Complex Predictive Models under Uncertainty by Ki-Tae Kim (10184066)

    Published 2021
    “…The central questions are: How do we optimally learn from data through the lens of models? …”
  20. 20

    SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion by Omar Ghattas (4387300)

    Published 2020
    “…The central questions are: How do we optimally learn from data through the lens of models? …”