Showing 1 - 20 results of 21 for search '(( lens based models optimization algorithm ) OR ( binary based codon optimization algorithm ))', query time: 0.32s Refine Results
  1. 1

    Lens imaging opposition-based learning. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  2. 2

    Optical Assessment of Tear Glucose by Smart Biosensor Based on Nanoparticle Embedded Contact Lens by Hee-Jae Jeon (4614121)

    Published 2021
    “…Additionally, we propose an image processing algorithm that automatically optimizes the measurement accuracy even in the presence of image blurring, possibly caused by breathing, subtle movements, and eye blinking. …”
  3. 3

    Optical Assessment of Tear Glucose by Smart Biosensor Based on Nanoparticle Embedded Contact Lens by Hee-Jae Jeon (4614121)

    Published 2021
    “…Additionally, we propose an image processing algorithm that automatically optimizes the measurement accuracy even in the presence of image blurring, possibly caused by breathing, subtle movements, and eye blinking. …”
  4. 4

    Compare algorithm parameter settings. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  5. 5
  6. 6
  7. 7

    -value on CEC2022 (dim = 20). by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  8. 8

    Precision elimination strategy. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  9. 9

    Results of low-light image enhancement test. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  10. 10

    -value on 23 benchmark functions (dim = 30). by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  11. 11

    Evaluation metrics obtained by SBOA and MESBOA. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  12. 12
  13. 13

    Massive Mixed Models in Julia by Phillip M. Alday (2814652)

    Published 2025
    “…<br><br>Although we are already very excited to be able to fit such large models at all, we want to fit them even faster. Julia enables us to continue algorithmic development in a coherent way. …”
  14. 14

    adjoint-elastic-registration.zip from Organ registration from partial surface data in augmented surgery from an optimal control perspective by Stéphane Cotin (3944129)

    Published 2023
    “…The resulting optimization problem features an elastic model, a least-squares data attachment term based on orthogonal projections, and an admissible set of surface loads defined prior to reconstruction in the mechanical model. …”
  15. 15

    Parameter settings. by Yang Gao (18005)

    Published 2025
    “…<div><p>This study aims to enhance the recommendation system’s capability in addressing cold start issues, semantic understanding, and modeling the diversity of user interests. The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
  16. 16

    Fusion framework. by Yang Gao (18005)

    Published 2025
    “…<div><p>This study aims to enhance the recommendation system’s capability in addressing cold start issues, semantic understanding, and modeling the diversity of user interests. The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
  17. 17

    Generation steps of user profiles. by Yang Gao (18005)

    Published 2025
    “…<div><p>This study aims to enhance the recommendation system’s capability in addressing cold start issues, semantic understanding, and modeling the diversity of user interests. The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
  18. 18

    Minisymposterium: Muq-Hippylib: A Bayesian Inference Software Framework Integrating Data with Complex Predictive Models under Uncertainty by Ki-Tae Kim (10184066)

    Published 2021
    “…The central questions are: How do we optimally learn from data through the lens of models? …”
  19. 19

    SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion by Omar Ghattas (4387300)

    Published 2020
    “…The central questions are: How do we optimally learn from data through the lens of models? …”
  20. 20

    SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion by Umberto Villa (8400192)

    Published 2020
    “…The central questions are: How do we optimally learn from data through the lens of models? …”