Showing 1 - 17 results of 17 for search '(( lens based process optimization algorithm ) OR ( library based basis optimization algorithm ))', query time: 0.48s Refine Results
  1. 1

    Optical Assessment of Tear Glucose by Smart Biosensor Based on Nanoparticle Embedded Contact Lens by Hee-Jae Jeon (4614121)

    Published 2021
    “…Additionally, we propose an image processing algorithm that automatically optimizes the measurement accuracy even in the presence of image blurring, possibly caused by breathing, subtle movements, and eye blinking. …”
  2. 2

    Optical Assessment of Tear Glucose by Smart Biosensor Based on Nanoparticle Embedded Contact Lens by Hee-Jae Jeon (4614121)

    Published 2021
    “…Additionally, we propose an image processing algorithm that automatically optimizes the measurement accuracy even in the presence of image blurring, possibly caused by breathing, subtle movements, and eye blinking. …”
  3. 3
  4. 4
  5. 5

    Example of simulated calcium imaging dataset. by Virgil Christian Garcia Castillo (19688355)

    Published 2024
    “…In this study, we report an ROI selection method using a series of adaptive binarizations with a gaussian method and morphological image processing. The parameters for each operation such as the kernel size, sigma and footprint size were optimized. …”
  6. 6

    Probability density of each bin of accuracy. by Virgil Christian Garcia Castillo (19688355)

    Published 2024
    “…In this study, we report an ROI selection method using a series of adaptive binarizations with a gaussian method and morphological image processing. The parameters for each operation such as the kernel size, sigma and footprint size were optimized. …”
  7. 7
  8. 8

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment by Jianfang Cao (1881379)

    Published 2019
    “…<div><p>An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. …”
  9. 9

    Image4_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF by Cédric Allier (4180903)

    Published 2022
    “…The networks have been trained to predict quantitative representation of the cell measurements that can be next translated into measurement lists with a local maxima algorithm. In this article, we discuss the performance and limitations of this novel deep learning-based quantification pipeline in comparison with a standard image processing solution. …”
  10. 10

    Image1_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF by Cédric Allier (4180903)

    Published 2022
    “…The networks have been trained to predict quantitative representation of the cell measurements that can be next translated into measurement lists with a local maxima algorithm. In this article, we discuss the performance and limitations of this novel deep learning-based quantification pipeline in comparison with a standard image processing solution. …”
  11. 11

    Image3_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF by Cédric Allier (4180903)

    Published 2022
    “…The networks have been trained to predict quantitative representation of the cell measurements that can be next translated into measurement lists with a local maxima algorithm. In this article, we discuss the performance and limitations of this novel deep learning-based quantification pipeline in comparison with a standard image processing solution. …”
  12. 12

    Image2_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF by Cédric Allier (4180903)

    Published 2022
    “…The networks have been trained to predict quantitative representation of the cell measurements that can be next translated into measurement lists with a local maxima algorithm. In this article, we discuss the performance and limitations of this novel deep learning-based quantification pipeline in comparison with a standard image processing solution. …”
  13. 13

    DataSheet1_CNN-Based Cell Analysis: From Image to Quantitative Representation.pdf by Cédric Allier (4180903)

    Published 2022
    “…The networks have been trained to predict quantitative representation of the cell measurements that can be next translated into measurement lists with a local maxima algorithm. In this article, we discuss the performance and limitations of this novel deep learning-based quantification pipeline in comparison with a standard image processing solution. …”
  14. 14

    Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat. by Enrico Bertozzi (22461709)

    Published 2025
    “…Multiple SVM models were trained and evaluated, including configurations with linear and RBF (Radial Basis Function) kernels. </p><p dir="ltr">Additionally, an exhaustive hyperparameter search was performed using GridSearchCV to optimize the C, gamma, and kernel parameters (testing 'linear,' 'rbf,' 'poly,' and 'sigmoid'), aiming to find the highest-performing configuration. …”
  15. 15

    Collaborative Research: SI2-SSI: ELSI-Infrastructure for Scalable Electronic Structure Theory by Volker Blum (3683170)

    Published 2020
    “…The ELectronic Structure Infrastructure (ELSI) project provides an open-source software interface to facilitate the implementation and optimal use of high-performance solver libraries covering cubic scaling eigensolvers, linear scaling density-matrix-based algorithms, and other reduced scaling methods in between. …”
  16. 16

    Collaborative Research: SI2-SSI: ELSI - Infrastructure for Scalable Electronic Structure Theory by Volker Blum (3683170)

    Published 2020
    “…The ELectronic Structure Infrastructure (ELSI) project provides an open-source software interface to facilitate the implementation and optimal use of high-performance solver libraries covering cubic scaling eigensolvers, linear scaling density-matrix-based algorithms, and other reduced scaling methods in between. …”
  17. 17

    <b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043) by Erola Fenollosa (20977421)

    Published 2025
    “…</li><li>The dataframe of extracted colour features from all leaf images and lab variables (ecophysiological predictors and variables to be predicted)</li><li>Set of scripts used for image pre-processing, features extraction, data analytsis, visualization and Machine learning algorithms training, using ImageJ, R and Python.…”