Search alternatives:
solution optimization » production optimization (Expand Search), reaction optimization (Expand Search), function optimization (Expand Search)
scale optimization » whale optimization (Expand Search), swarm optimization (Expand Search), phase optimization (Expand Search)
based solution » based solutions (Expand Search), based selection (Expand Search), based simulation (Expand Search)
lens » less (Expand Search)
solution optimization » production optimization (Expand Search), reaction optimization (Expand Search), function optimization (Expand Search)
scale optimization » whale optimization (Expand Search), swarm optimization (Expand Search), phase optimization (Expand Search)
based solution » based solutions (Expand Search), based selection (Expand Search), based simulation (Expand Search)
lens » less (Expand Search)
-
1
Lens imaging opposition-based learning.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
2
-
3
Compare algorithm parameter settings.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
4
-
5
-
6
-value on CEC2022 (dim = 20).
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
7
Precision elimination strategy.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
8
Results of low-light image enhancement test.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
9
-value on 23 benchmark functions (dim = 30).
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
10
Evaluation metrics obtained by SBOA and MESBOA.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
11
-
12
-
13
-
14
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
-
15
Image4_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF
Published 2022“…The networks have been trained to predict quantitative representation of the cell measurements that can be next translated into measurement lists with a local maxima algorithm. In this article, we discuss the performance and limitations of this novel deep learning-based quantification pipeline in comparison with a standard image processing solution. …”
-
16
Image1_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF
Published 2022“…The networks have been trained to predict quantitative representation of the cell measurements that can be next translated into measurement lists with a local maxima algorithm. In this article, we discuss the performance and limitations of this novel deep learning-based quantification pipeline in comparison with a standard image processing solution. …”
-
17
Image3_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF
Published 2022“…The networks have been trained to predict quantitative representation of the cell measurements that can be next translated into measurement lists with a local maxima algorithm. In this article, we discuss the performance and limitations of this novel deep learning-based quantification pipeline in comparison with a standard image processing solution. …”
-
18
Image2_CNN-Based Cell Analysis: From Image to Quantitative Representation.TIF
Published 2022“…The networks have been trained to predict quantitative representation of the cell measurements that can be next translated into measurement lists with a local maxima algorithm. In this article, we discuss the performance and limitations of this novel deep learning-based quantification pipeline in comparison with a standard image processing solution. …”
-
19
DataSheet1_CNN-Based Cell Analysis: From Image to Quantitative Representation.pdf
Published 2022“…The networks have been trained to predict quantitative representation of the cell measurements that can be next translated into measurement lists with a local maxima algorithm. In this article, we discuss the performance and limitations of this novel deep learning-based quantification pipeline in comparison with a standard image processing solution. …”
-
20