يعرض 1 - 20 نتائج من 28 نتيجة بحث عن '(( lesions based work optimization algorithm ) OR ( binary mask based optimization algorithm ))', وقت الاستعلام: 0.50s تنقيح النتائج
  1. 1

    A* Path-Finding Algorithm to Determine Cell Connections حسب Max Weng (22327159)

    منشور في 2025
    "…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…"
  2. 2

    Table 1_Deep learning for MRI-based acute and subacute ischaemic stroke lesion segmentation—a systematic review, meta-analysis, and pilot evaluation of key results.xlsx حسب Makram Baaklini (21515348)

    منشور في 2025
    "…Works on the theme have been reviewed, but none of the reviews have addressed the seminal question on what would be the optimal architecture to address this challenge. …"
  3. 3

    Data Sheet 2_Deep learning for MRI-based acute and subacute ischaemic stroke lesion segmentation—a systematic review, meta-analysis, and pilot evaluation of key results.docx حسب Makram Baaklini (21515348)

    منشور في 2025
    "…Works on the theme have been reviewed, but none of the reviews have addressed the seminal question on what would be the optimal architecture to address this challenge. …"
  4. 4

    Data Sheet 1_Deep learning for MRI-based acute and subacute ischaemic stroke lesion segmentation—a systematic review, meta-analysis, and pilot evaluation of key results.docx حسب Makram Baaklini (21515348)

    منشور في 2025
    "…Works on the theme have been reviewed, but none of the reviews have addressed the seminal question on what would be the optimal architecture to address this challenge. …"
  5. 5

    Flowchart scheme of the ML-based model. حسب Noshaba Qasmi (20405009)

    منشور في 2024
    "…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …"
  6. 6
  7. 7

    Data_Sheet_1_Manual lesion segmentations for traumatic brain injury characterization.docx حسب Alexis Bennett (14799790)

    منشور في 2023
    "…Though tedious, the methods reported in this work are necessary to create reliable data for effective training of future machine-learning based lesion segmentation methods in TBI patients and subsequent PTE analyses.…"
  8. 8
  9. 9

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
  10. 10

    Image_13_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG حسب Niklas Wulms (11928755)

    منشور في 2022
    "…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…"
  11. 11

    Image_2_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG حسب Niklas Wulms (11928755)

    منشور في 2022
    "…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…"
  12. 12

    Image_1_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG حسب Niklas Wulms (11928755)

    منشور في 2022
    "…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…"
  13. 13

    Image_6_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG حسب Niklas Wulms (11928755)

    منشور في 2022
    "…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…"
  14. 14

    Image_10_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG حسب Niklas Wulms (11928755)

    منشور في 2022
    "…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…"
  15. 15

    Data_Sheet_1_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.pdf حسب Niklas Wulms (11928755)

    منشور في 2022
    "…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…"
  16. 16

    Image_12_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG حسب Niklas Wulms (11928755)

    منشور في 2022
    "…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…"
  17. 17

    Image_3_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG حسب Niklas Wulms (11928755)

    منشور في 2022
    "…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…"
  18. 18

    Data_Sheet_1_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.zip حسب Niklas Wulms (11928755)

    منشور في 2022
    "…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…"
  19. 19

    Image_4_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG حسب Niklas Wulms (11928755)

    منشور في 2022
    "…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…"
  20. 20

    Image_9_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG حسب Niklas Wulms (11928755)

    منشور في 2022
    "…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…"