Search alternatives:
action optimization » reaction optimization (Expand Search), function optimization (Expand Search), codon optimization (Expand Search)
field optimization » lead optimization (Expand Search), guided optimization (Expand Search), linear optimization (Expand Search)
based action » based motion (Expand Search), based active (Expand Search), based fusion (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based field » pulsed field (Expand Search)
less based » lens based (Expand Search), lemos based (Expand Search), degs based (Expand Search)
action optimization » reaction optimization (Expand Search), function optimization (Expand Search), codon optimization (Expand Search)
field optimization » lead optimization (Expand Search), guided optimization (Expand Search), linear optimization (Expand Search)
based action » based motion (Expand Search), based active (Expand Search), based fusion (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based field » pulsed field (Expand Search)
less based » lens based (Expand Search), lemos based (Expand Search), degs based (Expand Search)
-
1
-
2
-
3
-
4
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
5
Parameter settings of the comparison algorithms.
Published 2024“…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
6
Datasets and their properties.
Published 2023“…<div><p>Feature selection problem represents the field of study that requires approximate algorithms to identify discriminative and optimally combined features. …”
-
7
Parameter settings.
Published 2023“…<div><p>Feature selection problem represents the field of study that requires approximate algorithms to identify discriminative and optimally combined features. …”
-
8
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
9
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
10
-
11
Block diagram of 2-DOF PIDA controller.
Published 2025“…The controller structure allows independent tuning of set-point tracking and disturbance rejection by introducing separate feedforward paths in the proportional and derivative channels while maintaining integral and acceleration actions on the error signal. To optimize the controller parameters, the recently developed greater cane rat algorithm (GCRA) is employed for the first time in this context. …”
-
12
Zoomed view of Fig 7.
Published 2025“…The controller structure allows independent tuning of set-point tracking and disturbance rejection by introducing separate feedforward paths in the proportional and derivative channels while maintaining integral and acceleration actions on the error signal. To optimize the controller parameters, the recently developed greater cane rat algorithm (GCRA) is employed for the first time in this context. …”
-
13
Zoomed view of Fig 10.
Published 2025“…The controller structure allows independent tuning of set-point tracking and disturbance rejection by introducing separate feedforward paths in the proportional and derivative channels while maintaining integral and acceleration actions on the error signal. To optimize the controller parameters, the recently developed greater cane rat algorithm (GCRA) is employed for the first time in this context. …”
-
14
-
15
Comparison in terms of the sensitivity.
Published 2024“…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
16
Parameter sensitivity of BIMGO.
Published 2024“…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
17
Details of the medical datasets.
Published 2024“…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
18
The flowchart of IMGO.
Published 2024“…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
19
Comparison in terms of the selected features.
Published 2024“…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
20
Iterative chart of control factor.
Published 2024“…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”