بدائل البحث:
bayesian optimization » based optimization (توسيع البحث)
share optimization » swarm optimization (توسيع البحث), whale optimization (توسيع البحث), phase optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
less based » lens based (توسيع البحث), lemos based (توسيع البحث), degs based (توسيع البحث)
data share » data store (توسيع البحث), data space (توسيع البحث), data sharing (توسيع البحث)
bayesian optimization » based optimization (توسيع البحث)
share optimization » swarm optimization (توسيع البحث), whale optimization (توسيع البحث), phase optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
less based » lens based (توسيع البحث), lemos based (توسيع البحث), degs based (توسيع البحث)
data share » data store (توسيع البحث), data space (توسيع البحث), data sharing (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
Table_1_Unveiling suspicious phishing attacks: enhancing detection with an optimal feature vectorization algorithm and supervised machine learning.DOCX
منشور في 2024"…Subsequently, data cleansing, curation, and dimensionality reduction were performed to remove outliers, handle missing values, and exclude less predictive features. To identify the optimal model, the study evaluated and compared 15 SML algorithms arising from different machine learning (ML) families, including Bayesian, nearest-neighbors, decision trees, neural networks, quadratic discriminant analysis, logistic regression, bagging, boosting, random forests, and ensembles. …"
-
19
Table_2_Unveiling suspicious phishing attacks: enhancing detection with an optimal feature vectorization algorithm and supervised machine learning.DOCX
منشور في 2024"…Subsequently, data cleansing, curation, and dimensionality reduction were performed to remove outliers, handle missing values, and exclude less predictive features. To identify the optimal model, the study evaluated and compared 15 SML algorithms arising from different machine learning (ML) families, including Bayesian, nearest-neighbors, decision trees, neural networks, quadratic discriminant analysis, logistic regression, bagging, boosting, random forests, and ensembles. …"
-
20
Using BART to Perform Pareto Optimization and Quantify its Uncertainties
منشور في 2021"…This article proposes Pareto Front (PF) and Pareto Set (PS) estimation methods using Bayesian Additive Regression Trees (BART), which is a nonparametric model whose assumptions are typically less restrictive than popular alternatives, such as Gaussian Processes (GPs). …"