بدائل البحث:
policy optimization » topology optimization (توسيع البحث), wolf optimization (توسيع البحث), process optimization (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
based policy » based policies (توسيع البحث)
binary task » binary mask (توسيع البحث)
task design » based design (توسيع البحث)
less based » lens based (توسيع البحث), lemos based (توسيع البحث), degs based (توسيع البحث)
policy optimization » topology optimization (توسيع البحث), wolf optimization (توسيع البحث), process optimization (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
based policy » based policies (توسيع البحث)
binary task » binary mask (توسيع البحث)
task design » based design (توسيع البحث)
less based » lens based (توسيع البحث), lemos based (توسيع البحث), degs based (توسيع البحث)
-
1
Performance of different ensemble algorithms for optimal partitioning policy.
منشور في 2024الموضوعات: -
2
Performance of different ensemble algorithms for optimal offloading policy.
منشور في 2024الموضوعات: -
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
13
-
14
-
15
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
16
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
17
-
18
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
19
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
20