Search alternatives:
solution optimization » production optimization (Expand Search), reaction optimization (Expand Search), function optimization (Expand Search)
self optimization » wolf optimization (Expand Search), field optimization (Expand Search), lead optimization (Expand Search)
based solution » based solutions (Expand Search), based selection (Expand Search), based simulation (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
less based » lens based (Expand Search), lemos based (Expand Search), degs based (Expand Search)
solution optimization » production optimization (Expand Search), reaction optimization (Expand Search), function optimization (Expand Search)
self optimization » wolf optimization (Expand Search), field optimization (Expand Search), lead optimization (Expand Search)
based solution » based solutions (Expand Search), based selection (Expand Search), based simulation (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
less based » lens based (Expand Search), lemos based (Expand Search), degs based (Expand Search)
-
1
-
2
DE algorithm flow.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
3
Test results of different algorithms.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
4
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
5
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
6
General procedural flow of clustering algorithm.
Published 2024“…The results show that AVOCA generates 40% less clusters when compared to the Clustering Algorithm Based on Moth-Flame Optimization for VANETs (CAMONET). …”
-
7
Parameter settings of the comparison algorithms.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
8
Optimal cluster head approach.
Published 2024“…The results show that AVOCA generates 40% less clusters when compared to the Clustering Algorithm Based on Moth-Flame Optimization for VANETs (CAMONET). …”
-
9
Optimal cluster formation approach.
Published 2024“…The results show that AVOCA generates 40% less clusters when compared to the Clustering Algorithm Based on Moth-Flame Optimization for VANETs (CAMONET). …”
-
10
Plan frame of the house.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
11
Ablation test results.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
12
Hyperparameter selection test.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
13
Multiple index test results of different methods.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
14
Backtracking strategy diagram.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
15
Comparison of differences in literature methods.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
16
New building interior space layout model flow.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
17
Schematic of iteration process of IDE-IIGA.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
18
Schematic diagram of IGA chromosome coding.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
19
The flow of the SP-DRL algorithm.
Published 2023“…Finally, instances are used to analyze the optimization effect of the algorithm. The experimental results show that the proposed algorithm can produce three better and five comparable results compared with some classical heuristic algorithms. …”
-
20
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
Published 2025“…To tackle these challenges, this paper proposes the Blockchain Based Trusted Distributed Routing Scheme for MANET using Latent Encoder Coupled Generative Adversarial Network Optimized with Binary Emperor Penguin Optimizer (LEGAN-BEPO-BCMANET). …”