يعرض 1 - 20 نتائج من 28 نتيجة بحث عن '(( less based wolf optimization algorithm ) OR ( binary based case optimization algorithm ))*', وقت الاستعلام: 1.15s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4

    MSE for ILSTM algorithm in binary classification. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  5. 5
  6. 6

    Image 1_A novel inversion method of slope rock mechanical parameters using differential evolution gray wolf algorithm to optimize support vector regression.tif حسب Tingkai Hou (21014762)

    منشور في 2025
    "…</p>Methods<p>This paper proposes a displacement back-analysis (DBA) approach that utilizes support vector regression (SVR) optimized by differential evolution grey wolf algorithm (DE-GWO) to invert the RMMPs, which improves global optimization capability and inversion accuracy. …"
  7. 7

    Image 2_A novel inversion method of slope rock mechanical parameters using differential evolution gray wolf algorithm to optimize support vector regression.tif حسب Tingkai Hou (21014762)

    منشور في 2025
    "…</p>Methods<p>This paper proposes a displacement back-analysis (DBA) approach that utilizes support vector regression (SVR) optimized by differential evolution grey wolf algorithm (DE-GWO) to invert the RMMPs, which improves global optimization capability and inversion accuracy. …"
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    Analysis and design of algorithms for the manufacturing process of integrated circuits حسب Sonia Fleytas (16856403)

    منشور في 2023
    "…From this, we propose: (i) a new ILP model, and (ii) a new solution representation, which, unlike the reference work, guarantees that feasible solutions are obtained throughout the generation of new individuals. Based on this new representation, we proposed and evaluated other approximate methods, including a greedy algorithm and a genetic algorithm that improve the state-of-the-art results for test cases usually used in the literature. …"
  15. 15

    Summary of LITNET-2020 dataset. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  16. 16

    SHAP analysis for LITNET-2020 dataset. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  17. 17

    Comparison of intrusion detection systems. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  18. 18

    Parameter setting for CBOA and PSO. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  19. 19

    NSL-KDD dataset description. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  20. 20

    The architecture of LSTM cell. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"