يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '(( library based ad classification algorithm ) OR ( binary b codon optimization algorithm ))', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1

    Data from an Investigation of Music Analysis by the Application of Grammar-based Compressor حسب David Humphreys (19079318)

    منشور في 2024
    "…The Choral Public Domain Library (http://www2.cpdl.org/)<br>    3. Musopen (https://musopen.org/)<br>    4. …"
  2. 2

    Aluminum alloy industrial materials defect حسب Ying Han (20349093)

    منشور في 2024
    "…</p><h2>Description of the data and file structure</h2><p dir="ltr">This is a project based on the YOLOv8 enhanced algorithm for aluminum defect classification and detection tasks.…"
  3. 3

    scikit learn in gigantum حسب Dav Clark (646268)

    منشور في 2022
    "…We'll use scikit-learn with the venerable iris dataset, Scikit-learn is a high-quality machine learning library that focuses on well-established algorithms for machine learning tasks like classification and prediction. …"
  4. 4

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows حسب Pierre-Alexis DELAROCHE (22092572)

    منشور في 2025
    "…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"