Search alternatives:
function optimization » reaction optimization (Expand Search), formulation optimization (Expand Search), generation optimization (Expand Search)
based optimization » whale optimization (Expand Search)
based function » based functional (Expand Search), basis function (Expand Search), basis functions (Expand Search)
library based » laboratory based (Expand Search)
based based » based case (Expand Search), based basis (Expand Search), ranked based (Expand Search)
lens » less (Expand Search)
function optimization » reaction optimization (Expand Search), formulation optimization (Expand Search), generation optimization (Expand Search)
based optimization » whale optimization (Expand Search)
based function » based functional (Expand Search), basis function (Expand Search), basis functions (Expand Search)
library based » laboratory based (Expand Search)
based based » based case (Expand Search), based basis (Expand Search), ranked based (Expand Search)
lens » less (Expand Search)
-
1
Lens imaging opposition-based learning.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
Comparison of ranks for classification algorithms across performance metrics.
Published 2022Subjects: -
10
Compare algorithm parameter settings.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
11
Tradeoff between execution time and predictive performance for classification algorithms.
Published 2022Subjects: -
12
RosettaAMRLD: A Reaction-Driven Approach for Structure-Based Drug Design from Combinatorial Libraries with Monte Carlo Metropolis Algorithms
Published 2025“…The Rosetta automated Monte Carlo reaction-based ligand design (RosettaAMRLD) integrates a Monte Carlo Metropolis (MCM) algorithm and reaction-driven molecule proposal to enhance structure-based <i>de novo</i> drug discovery. …”
-
13
-
14
-
15
-
16
Comparison based on hard instances from [79].
Published 2025“…Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. …”
-
17
-
18
-value on 23 benchmark functions (dim = 30).
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
19
-
20