Showing 41 - 60 results of 93 for search '(( library based design optimization algorithm ) OR ( binary data code optimization algorithm ))', query time: 0.65s Refine Results
  1. 41

    Multiple comparison of means - Tukey HSD. by Xiang Tian (4369285)

    Published 2025
    “…Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. …”
  2. 42

    Schematic diagram of the cut-and-mark operation. by Xiang Tian (4369285)

    Published 2025
    “…Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. …”
  3. 43

    Layout of hybrid flow shop scheduling. by Xiang Tian (4369285)

    Published 2025
    “…Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. …”
  4. 44

    Probe combines and as a 2-aggregation. by Xiang Tian (4369285)

    Published 2025
    “…Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. …”
  5. 45

    Scheduling Gantt chart for instance j10c10c6. by Xiang Tian (4369285)

    Published 2025
    “…Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. …”
  6. 46

    Scheduling Gantt chart for instance j30c5e10. by Xiang Tian (4369285)

    Published 2025
    “…Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. …”
  7. 47

    Box plot comparison on instance j30c5e10. by Xiang Tian (4369285)

    Published 2025
    “…Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. …”
  8. 48

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  9. 49

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery by Muzammil Kabier (21028487)

    Published 2025
    “…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
  10. 50

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery by Muzammil Kabier (21028487)

    Published 2025
    “…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
  11. 51

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery by Muzammil Kabier (21028487)

    Published 2025
    “…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
  12. 52

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery by Muzammil Kabier (21028487)

    Published 2025
    “…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
  13. 53

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery by Muzammil Kabier (21028487)

    Published 2025
    “…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
  14. 54

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery by Muzammil Kabier (21028487)

    Published 2025
    “…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
  15. 55

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery by Muzammil Kabier (21028487)

    Published 2025
    “…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
  16. 56

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery by Muzammil Kabier (21028487)

    Published 2025
    “…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
  17. 57

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery by Muzammil Kabier (21028487)

    Published 2025
    “…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
  18. 58

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery by Muzammil Kabier (21028487)

    Published 2025
    “…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
  19. 59

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery by Muzammil Kabier (21028487)

    Published 2025
    “…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
  20. 60

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery by Muzammil Kabier (21028487)

    Published 2025
    “…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”