Search alternatives:
process optimization » robust optimization (Expand Search), model optimization (Expand Search), policy optimization (Expand Search)
design optimization » bayesian optimization (Expand Search)
library based » laboratory based (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
process optimization » robust optimization (Expand Search), model optimization (Expand Search), policy optimization (Expand Search)
design optimization » bayesian optimization (Expand Search)
library based » laboratory based (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
-
1
-
2
RosettaAMRLD: A Reaction-Driven Approach for Structure-Based Drug Design from Combinatorial Libraries with Monte Carlo Metropolis Algorithms
Published 2025“…The Rosetta automated Monte Carlo reaction-based ligand design (RosettaAMRLD) integrates a Monte Carlo Metropolis (MCM) algorithm and reaction-driven molecule proposal to enhance structure-based <i>de novo</i> drug discovery. …”
-
3
-
4
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
5
-
6
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
7
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
8
An optimal solution for the HFS instance.
Published 2025“…Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. …”
-
9
Fine-Tuning a Genetic Algorithm for CAMD: A Screening-Guided Warm Start
Published 2025“…In response to these challenges, this work presents a method to fine-tune a genetic algorithm for CAMD. The proposed method builds on the COSMO-CAMD framework that utilizes a genetic algorithm for solving optimization-based molecular design problems and COSMO-RS for predicting physical properties of molecules. …”
-
10
Fine-Tuning a Genetic Algorithm for CAMD: A Screening-Guided Warm Start
Published 2025“…In response to these challenges, this work presents a method to fine-tune a genetic algorithm for CAMD. The proposed method builds on the COSMO-CAMD framework that utilizes a genetic algorithm for solving optimization-based molecular design problems and COSMO-RS for predicting physical properties of molecules. …”
-
11
Event-driven data flow processing.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
12
Comparison based on hard instances from [79].
Published 2025“…Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. …”
-
13
-
14
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
Published 2025“…The performance of the proposed LEGAN-BEPO-BCMANET technique attains 29.786%, 19.25%, 22.93%, 27.21%, 31.02%, 26.91%, and 25.61% greater throughput, compared to existing methods like Blockchain-based BATMAN protocol utilizing MANET with an ensemble algorithm (BATMAN-MANET), Block chain-based trusted distributed routing scheme with optimized dropout ensemble extreme learning neural network in MANET (DEELNN-MANET), A secured trusted routing utilizing structure of a new directed acyclic graph-blockchain in MANET internet of things environment (DAG-MANET), An Optimized Link State Routing Protocol with Blockchain Framework for Efficient Video-Packet Transmission and Security over MANET (OLSRP-MANET), Auto-metric Graph Neural Network based Blockchain Technology for Protected Dynamic Optimum Routing in MANET (AGNN-MANET) and Data security-based routing in MANETs under key management process (DSR-MANET) respectively.…”
-
15
-
16
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…</p><p dir="ltr">Astrocytes were dissociated from E18 mouse cortical tissue, and image data were processed using a Cellpose 2.0 model to mask nuclei. …”
-
17
-
18
Dynamic resource allocation process.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
19
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
20
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”