Search alternatives:
design optimization » bayesian optimization (Expand Search)
where optimization » whale optimization (Expand Search), phase optimization (Expand Search), other optimization (Expand Search)
library based » laboratory based (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data where » data were (Expand Search), dataset where (Expand Search)
design optimization » bayesian optimization (Expand Search)
where optimization » whale optimization (Expand Search), phase optimization (Expand Search), other optimization (Expand Search)
library based » laboratory based (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data where » data were (Expand Search), dataset where (Expand Search)
-
1
-
2
-
3
RosettaAMRLD: A Reaction-Driven Approach for Structure-Based Drug Design from Combinatorial Libraries with Monte Carlo Metropolis Algorithms
Published 2025“…The Rosetta automated Monte Carlo reaction-based ligand design (RosettaAMRLD) integrates a Monte Carlo Metropolis (MCM) algorithm and reaction-driven molecule proposal to enhance structure-based <i>de novo</i> drug discovery. …”
-
4
-
5
Fine-Tuning a Genetic Algorithm for CAMD: A Screening-Guided Warm Start
Published 2025“…In response to these challenges, this work presents a method to fine-tune a genetic algorithm for CAMD. The proposed method builds on the COSMO-CAMD framework that utilizes a genetic algorithm for solving optimization-based molecular design problems and COSMO-RS for predicting physical properties of molecules. …”
-
6
Fine-Tuning a Genetic Algorithm for CAMD: A Screening-Guided Warm Start
Published 2025“…In response to these challenges, this work presents a method to fine-tune a genetic algorithm for CAMD. The proposed method builds on the COSMO-CAMD framework that utilizes a genetic algorithm for solving optimization-based molecular design problems and COSMO-RS for predicting physical properties of molecules. …”
-
7
An optimal solution for the HFS instance.
Published 2025“…Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. …”
-
8
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
9
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
10
Acceleration of Inverse Molecular Design by Using Predictive Techniques
Published 2019“…This study addresses one of the most important drawbacks inherently related to molecular searches in chemical compound space by greedy algorithms such as Best First Search and Genetic Algorithm, i.e., the large computational cost required to optimize one or more quantum-chemical properties. …”
-
11
-
12
Comparison based on hard instances from [79].
Published 2025“…Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. …”
-
13
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
Published 2025“…The performance of the proposed LEGAN-BEPO-BCMANET technique attains 29.786%, 19.25%, 22.93%, 27.21%, 31.02%, 26.91%, and 25.61% greater throughput, compared to existing methods like Blockchain-based BATMAN protocol utilizing MANET with an ensemble algorithm (BATMAN-MANET), Block chain-based trusted distributed routing scheme with optimized dropout ensemble extreme learning neural network in MANET (DEELNN-MANET), A secured trusted routing utilizing structure of a new directed acyclic graph-blockchain in MANET internet of things environment (DAG-MANET), An Optimized Link State Routing Protocol with Blockchain Framework for Efficient Video-Packet Transmission and Security over MANET (OLSRP-MANET), Auto-metric Graph Neural Network based Blockchain Technology for Protected Dynamic Optimum Routing in MANET (AGNN-MANET) and Data security-based routing in MANETs under key management process (DSR-MANET) respectively.…”
-
14
<i>hi</i>PRS algorithm process flow.
Published 2023“…<b>(C)</b> The whole training data is then scanned, searching for these sequences and deriving a re-encoded dataset where interaction terms are binary features (i.e., 1 if sequence <i>i</i> is observed in <i>j</i>-th patient genotype, 0 otherwise). …”
-
15
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…In recent years, two computational techniques, machine learning (ML) and physics-based methods, have evolved substantially and are now frequently incorporated into the medicinal chemist’s toolbox to enhance the efficiency of both hit optimization and candidate design. …”
-
16
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…In recent years, two computational techniques, machine learning (ML) and physics-based methods, have evolved substantially and are now frequently incorporated into the medicinal chemist’s toolbox to enhance the efficiency of both hit optimization and candidate design. …”
-
17
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…In recent years, two computational techniques, machine learning (ML) and physics-based methods, have evolved substantially and are now frequently incorporated into the medicinal chemist’s toolbox to enhance the efficiency of both hit optimization and candidate design. …”
-
18
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…In recent years, two computational techniques, machine learning (ML) and physics-based methods, have evolved substantially and are now frequently incorporated into the medicinal chemist’s toolbox to enhance the efficiency of both hit optimization and candidate design. …”
-
19
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…In recent years, two computational techniques, machine learning (ML) and physics-based methods, have evolved substantially and are now frequently incorporated into the medicinal chemist’s toolbox to enhance the efficiency of both hit optimization and candidate design. …”
-
20
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…In recent years, two computational techniques, machine learning (ML) and physics-based methods, have evolved substantially and are now frequently incorporated into the medicinal chemist’s toolbox to enhance the efficiency of both hit optimization and candidate design. …”