Search alternatives:
policy optimization » topology optimization (Expand Search), wolf optimization (Expand Search), process optimization (Expand Search)
library based » laboratory based (Expand Search)
binary basic » binary mask (Expand Search)
basic policy » ai policy (Expand Search)
policy optimization » topology optimization (Expand Search), wolf optimization (Expand Search), process optimization (Expand Search)
library based » laboratory based (Expand Search)
binary basic » binary mask (Expand Search)
basic policy » ai policy (Expand Search)
-
1
A Practical Algorithm to Solve the Near-Congruence Problem for Rigid Molecules and Clusters
Published 2023“…The Fortran implementation of the algorithm is available as an open source library (https://github.com/qcuaeh/molalignlib) and is suitable to be used in global optimization methods for the identification of local minima or basins.…”
-
2
-
3
Distribution of Bound Conformations in Conformational Ensembles for X‑ray Ligands Predicted by the ANI-2X Machine Learning Potential
Published 2023“…This information is useful to guide the construction of libraries for shape-based virtual screening and to improve the docking algorithm to efficiently sample bound conformations.…”
-
4
Distribution of Bound Conformations in Conformational Ensembles for X‑ray Ligands Predicted by the ANI-2X Machine Learning Potential
Published 2023“…This information is useful to guide the construction of libraries for shape-based virtual screening and to improve the docking algorithm to efficiently sample bound conformations.…”
-
5
-
6
Data_Sheet_1_CLGBO: An Algorithm for Constructing Highly Robust Coding Sets for DNA Storage.docx
Published 2021“…In this study, we describe an enhanced gradient-based optimizer that includes the Cauchy and Levy mutation strategy (CLGBO) to construct DNA coding sets, which are used as primer and address libraries. …”
-
7
Search for acetylcholinesterase inhibitors by computerized screening of approved drug compounds
Published 2025“…The screening process employed the SOL docking program with MMFF94 force field and genetic algorithms for global optimization, targeting the human AChE structure (PDB ID: 6O4W). …”
-
8
Table 1_Advances in the application of human-machine collaboration in healthcare: insights from China.docx
Published 2025“…“Human–machine collaboration” is based on an intelligent algorithmic system that utilizes the complementary strengths of humans and machines for data exchange, task allocation, decision making and collaborative work to provide more decision support. …”
-
9
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
Published 2025“…Reproducibility Framework Container Orchestration # Kubernetes deployment manifest for reproducible environment apiVersion: apps/v1 kind: Deployment metadata: name: energy-benchmark-pod spec: replicas: 1 selector: matchLabels: app: benchmark-runner template: metadata: labels: app: benchmark-runner spec: nodeSelector: hardware.profile: "high-performance" containers: - name: benchmark-container image: albumforge/energy-benchmark:v2.1.3 resources: requests: cpu: "8000m" memory: "16Gi" nvidia.com/gpu: 1 limits: cpu: "16000m" memory: "32Gi" env: - name: MEASUREMENT_PRECISION value: "high" - name: POWER_SAMPLING_RATE value: "1000" # 1kHz sampling Dependency Management FROM ubuntu:22.04-cuda11.8-devel RUN apt-get update && apt-get install -y \ perf-tools \ powertop \ intel-gpu-tools \ nvidia-smi \ cpupower \ msr-tools \ && rm -rf /var/lib/apt/lists/* COPY requirements.txt /opt/ RUN pip install -r /opt/requirements.txt Usage Examples and API Documentation Python Data Analysis Interface import pandas as pd import numpy as np from scipy import stats import matplotlib.pyplot as plt import seaborn as sns # Load dataset with optimized dtypes for memory efficiency df = pd.read_csv('ecological_benchmark_dataset.csv', dtype={'hardware_config': 'category', 'test_type': 'category'}) # Compute energy efficiency metrics df['energy_per_photo'] = df['energy_consumption_kwh'] / df['photo_count'] df['co2_per_gigabyte'] = df['co2_equivalent_g'] / df['total_volume_gb'] # Statistical analysis with confidence intervals local_energy = df[df['test_type'] == 'local_processing']['energy_consumption_kwh'] cloud_energy = df[df['test_type'] == 'cloud_processing']['energy_consumption_kwh'] t_stat, p_value = stats.ttest_ind(local_energy, cloud_energy) effect_size = (cloud_energy.mean() - local_energy.mean()) / np.sqrt((cloud_energy.var() + local_energy.var()) / 2) print(f"Statistical significance: p = {p_value:.2e}") print(f"Cohen's d effect size: {effect_size:.3f}") R Statistical Computing Environment library(tidyverse) library(lme4) # Linear mixed-effects models library(ggplot2) library(corrplot) # Load and preprocess data df <- read_csv("ecological_benchmark_dataset.csv") %>% mutate( test_type = factor(test_type), hardware_config = factor(hardware_config), log_energy = log(energy_consumption_kwh), efficiency_ratio = energy_consumption_kwh / processing_time_sec ) # Mixed-effects regression model accounting for hardware heterogeneity model <- lmer(log_energy ~ test_type + log(photo_count) + (1|hardware_config), data = df) # Extract model coefficients with confidence intervals summary(model) confint(model, method = "Wald") Advanced Analytics and Machine Learning Integration Predictive Modeling Framework from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.model_selection import cross_val_score, GridSearchCV from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import mean_absolute_error, r2_score # Feature engineering pipeline def create_feature_matrix(df): features = df[['photo_count', 'avg_file_size_mb', 'total_volume_gb']].copy() # Polynomial features for capturing non-linear relationships features['photo_count_squared'] = features['photo_count'] ** 2 features['size_volume_interaction'] = features['avg_file_size_mb'] * features['total_volume_gb'] # Hardware configuration encoding le = LabelEncoder() features['hardware_encoded'] = le.fit_transform(df['hardware_config']) return features # Energy consumption prediction model X = create_feature_matrix(df) y = df['energy_consumption_kwh'] # Hyperparameter optimization param_grid = { 'n_estimators': [100, 200, 500], 'max_depth': [10, 20, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] } rf_model = RandomForestRegressor(random_state=42) grid_search = GridSearchCV(rf_model, param_grid, cv=5, scoring='neg_mean_absolute_error') grid_search.fit(X, y) print(f"Best cross-validation score: {-grid_search.best_score_:.6f}") print(f"Optimal hyperparameters: {grid_search.best_params_}") Carbon Footprint Calculation Methodology Emission Factor Coefficients Carbon intensity calculations employ region-specific emission factors from the International Energy Agency (IEA) database: EMISSION_FACTORS = { 'EU_AVERAGE': 0.276, # kg CO₂/kWh (European Union average 2024) 'FRANCE': 0.057, # kg CO₂/kWh (Nuclear-dominant grid) 'GERMANY': 0.485, # kg CO₂/kWh (Coal transition period) 'NORWAY': 0.013, # kg CO₂/kWh (Hydroelectric dominant) 'GLOBAL_AVERAGE': 0.475 # kg CO₂/kWh (Global weighted average) } def calculate_carbon_footprint(energy_kwh: float, region: str = 'EU_AVERAGE') -> float: """ Calculate CO₂ equivalent emissions using lifecycle assessment methodology Args: energy_kwh: Energy consumption in kilowatt-hours region: Geographic region for emission factor selection Returns: CO₂ equivalent emissions in grams """ emission_factor = EMISSION_FACTORS.get(region, EMISSION_FACTORS['GLOBAL_AVERAGE']) co2_kg = energy_kwh * emission_factor return co2_kg * 1000 # Convert to grams Citation and Attribution This dataset is released under Creative Commons Attribution 4.0 International (CC BY 4.0) license. …”