Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
lead optimization » global optimization (Expand Search), swarm optimization (Expand Search), whale optimization (Expand Search)
library based » laboratory based (Expand Search)
binary b » binary _ (Expand Search)
b model » _ model (Expand Search), a model (Expand Search), 2 model (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
lead optimization » global optimization (Expand Search), swarm optimization (Expand Search), whale optimization (Expand Search)
library based » laboratory based (Expand Search)
binary b » binary _ (Expand Search)
b model » _ model (Expand Search), a model (Expand Search), 2 model (Expand Search)
-
1
-
2
-
3
-
4
<i>De Novo</i> Drug Design of Targeted Chemical Libraries Based on Artificial Intelligence and Pair-Based Multiobjective Optimization
Published 2020“…In the present study, we conceived a novel pair-based multiobjective approach implemented in an adapted SMILES generative algorithm based on recurrent neural networks for the automated <i>de novo</i> design of new molecules whose overall features are optimized by finding the best trade-offs among relevant physicochemical properties (MW, logP, HBA, HBD) and additional similarity-based constraints biasing specific biological targets. …”
-
5
<i>hi</i>PRS algorithm process flow.
Published 2023“…<b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …”
-
6
-
7
-
8
-
9
-
10
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
11
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
12
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
13
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
14
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
15
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
16
FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology
Published 2024“…Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. …”
-
17
-
18
-
19
Classification baseline performance.
Published 2025“…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
-
20
Feature selection results.
Published 2025“…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”