Search alternatives:
models optimization » model optimization (Expand Search), process optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
library based » laboratory based (Expand Search)
based models » based model (Expand Search)
models optimization » model optimization (Expand Search), process optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
library based » laboratory based (Expand Search)
based models » based model (Expand Search)
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
Published 2019“…Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …”
-
30
-
31
Schematic diagram of PM model.
Published 2025“…Finally, based on a large number of instances and real cases, IPMMPO-CP is compared with 9 representative algorithms and 2 latest CP models. …”
-
32
-
33
Addressing Imbalanced Classification Problems in Drug Discovery and Development Using Random Forest, Support Vector Machine, AutoGluon-Tabular, and H2O AutoML
Published 2025“…The important findings of our studies are as follows: (i) there is no effect of threshold optimization on ranking metrics such as AUC and AUPR, but AUC and AUPR get affected by class-weighting and SMOTTomek; (ii) for ML methods RF and SVM, significant percentage improvement up to 375, 33.33, and 450 over all the data sets can be achieved, respectively, for F1 score, MCC, and balanced accuracy, which are suitable for performance evaluation of imbalanced data sets; (iii) for AutoML libraries AutoGluon-Tabular and H2O AutoML, significant percentage improvement up to 383.33, 37.25, and 533.33 over all the data sets can be achieved, respectively, for F1 score, MCC, and balanced accuracy; (iv) the general pattern of percentage improvement in balanced accuracy is that the percentage improvement increases when the class ratio is systematically decreased from 0.5 to 0.1; in the case of F1 score and MCC, maximum improvement is achieved at the class ratio of 0.3; (v) for both ML and AutoML with balancing, it is observed that any individual class-balancing technique does not outperform all other methods on a significantly higher number of data sets based on F1 score; (vi) the three external balancing techniques combined outperformed the internal balancing methods of the ML and AutoML; (vii) AutoML tools perform as good as the ML models and in some cases perform even better for handling imbalanced classification when applied with imbalance handling techniques. …”
-
34
Diversity and specificity of lipid patterns in basal soil food web resources
Published 2019“…In marine environments, multivariate optimization models (Quantitative Fatty Acid Signature Analysis) and Bayesian approaches (source-tracking algorithm) were established to predict the proportion of predator diets using lipids as tracers. …”
-
35
ROC curves for the test set of four models.
Published 2025“…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…”
-
36
-
37
-
38
Testing results for classifying AD, MCI and NC.
Published 2024“…The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
39
Summary of existing CNN models.
Published 2024“…The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
40
Flowchart scheme of the ML-based model.
Published 2024“…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”