Search alternatives:
phase optimization » whale optimization (Expand Search), based optimization (Expand Search), path optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
library based » laboratory based (Expand Search)
based phase » based case (Expand Search)
binary risk » primary risk (Expand Search), dietary risk (Expand Search)
phase optimization » whale optimization (Expand Search), based optimization (Expand Search), path optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
library based » laboratory based (Expand Search)
based phase » based case (Expand Search)
binary risk » primary risk (Expand Search), dietary risk (Expand Search)
-
1
Using Variable Data-Independent Acquisition for Capillary Electrophoresis-Based Untargeted Metabolomics
Published 2024“…Capillary electrophoresis coupled with tandem mass spectrometry (CE-MS/MS) offers advantages in peak capacity and sensitivity for metabolic profiling owing to the electroosmotic flow-based separation. However, the utilization of data-independent MS/MS acquisition (DIA) is restricted due to the absence of an optimal procedure for analytical chemistry and its related informatics framework. …”
-
2
Using Variable Data-Independent Acquisition for Capillary Electrophoresis-Based Untargeted Metabolomics
Published 2024“…Capillary electrophoresis coupled with tandem mass spectrometry (CE-MS/MS) offers advantages in peak capacity and sensitivity for metabolic profiling owing to the electroosmotic flow-based separation. However, the utilization of data-independent MS/MS acquisition (DIA) is restricted due to the absence of an optimal procedure for analytical chemistry and its related informatics framework. …”
-
3
-
4
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
Published 2025“…Experimental Methodology Framework Local Processing Pipeline Architecture Data Flow: Storage I/O → Memory Buffer → CPU/GPU Processing → Cache Coherency → Storage I/O ├── Input Vector: mmap() system call for zero-copy file access ├── Processing Engine: OpenMP parallelization with NUMA-aware thread affinity ├── Memory Management: Custom allocator with hugepage backing └── Output Vector: Direct I/O bypassing kernel page cache Cloud Processing Pipeline Architecture Data Flow: Local Storage → Network Stack → TLS Tunnel → CDN Edge → Origin Server → Processing Grid → Response Pipeline ├── Upload Phase: TCP window scaling with congestion control algorithms ├── Network Layer: Application-layer protocol with adaptive bitrate streaming ├── Server-side Processing: Containerized microservices on Kubernetes orchestration ├── Load Balancing: Consistent hashing with geographic affinity routing └── Download Phase: HTTP/2 multiplexing with server push optimization Dataset Schema and Semantic Structure Primary Data Vectors Field Data Type Semantic Meaning Measurement Unit test_type Categorical Processing paradigm identifier {local_processing, cloud_processing} photo_count Integer Cardinality of input asset vector Count avg_file_size_mb Float64 Mean per-asset storage footprint Mebibytes (2^20 bytes) total_volume_gb Float64 Aggregate data corpus size Gigabytes (10^9 bytes) processing_time_sec Integer Wall-clock execution duration Seconds (SI base unit) cpu_usage_watts Float64 Thermal design power consumption Watts (Joules/second) ram_usage_mb Integer Peak resident set size Mebibytes network_upload_mb Float64 Egress bandwidth utilization Mebibytes energy_consumption_kwh Float64 Cumulative energy expenditure Kilowatt-hours co2_equivalent_g Float64 Carbon footprint estimation Grams CO₂e test_date ISO8601 Temporal execution marker RFC 3339 format hardware_config String Node topology identifier Alphanumeric encoding Statistical Distribution Characteristics The dataset exhibits non-parametric distribution patterns with significant heteroscedasticity across computational load vectors. …”
-
5
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
Published 2025“…The described extracted features were used to predict leaf betalain content (µg per FW) using multiple machine learning regression algorithms (Linear regression, Ridge regression, Gradient boosting, Decision tree, Random forest and Support vector machine) using the <i>Scikit-learn</i> 1.2.1 library in Python (v.3.10.1) (list of hyperparameters used is given in <a href="#sup1" target="_blank">Supplementary Data S5</a>). …”