Search alternatives:
process classification » protein classification (Expand Search), proposed classification (Expand Search), forest classification (Expand Search)
based optimization » whale optimization (Expand Search)
library based » laboratory based (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 based » _ based (Expand Search), 1 based (Expand Search), ai based (Expand Search)
process classification » protein classification (Expand Search), proposed classification (Expand Search), forest classification (Expand Search)
based optimization » whale optimization (Expand Search)
library based » laboratory based (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 based » _ based (Expand Search), 1 based (Expand Search), ai based (Expand Search)
-
41
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
42
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
43
-
44
-
45
MCnebula: Critical Chemical Classes for the Classification and Boost Identification by Visualization for Untargeted LC–MS/MS Data Analysis
Published 2023“…This framework consists of three vital steps as follows: (1) abundance-based classes (ABC) selection algorithm, (2) critical chemical classes to classify “features” (corresponding to compounds), and (3) visualization as multiple Child-Nebulae (network graph) with annotation, chemical classification, and structure. …”
-
46
MCnebula: Critical Chemical Classes for the Classification and Boost Identification by Visualization for Untargeted LC–MS/MS Data Analysis
Published 2023“…This framework consists of three vital steps as follows: (1) abundance-based classes (ABC) selection algorithm, (2) critical chemical classes to classify “features” (corresponding to compounds), and (3) visualization as multiple Child-Nebulae (network graph) with annotation, chemical classification, and structure. …”
-
47
MCnebula: Critical Chemical Classes for the Classification and Boost Identification by Visualization for Untargeted LC–MS/MS Data Analysis
Published 2023“…This framework consists of three vital steps as follows: (1) abundance-based classes (ABC) selection algorithm, (2) critical chemical classes to classify “features” (corresponding to compounds), and (3) visualization as multiple Child-Nebulae (network graph) with annotation, chemical classification, and structure. …”
-
48
MCnebula: Critical Chemical Classes for the Classification and Boost Identification by Visualization for Untargeted LC–MS/MS Data Analysis
Published 2023“…This framework consists of three vital steps as follows: (1) abundance-based classes (ABC) selection algorithm, (2) critical chemical classes to classify “features” (corresponding to compounds), and (3) visualization as multiple Child-Nebulae (network graph) with annotation, chemical classification, and structure. …”
-
49
-
50
-
51
Data_Sheet_1_A Global Optimizer for Nanoclusters.PDF
Published 2019“…This method is implemented in PyAR (https://github.com/anooplab/pyar) program. The global optimization in PyAR involves two parts, generation of several trial geometries and gradient-based local optimization of the trial geometries. …”
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data
Published 2021“…In this article, we develop a novel angle-based approach to search the optimal DTR under a multicategory treatment framework for survival data. …”