Search alternatives:
process classification » protein classification (Expand Search), proposed classification (Expand Search), forest classification (Expand Search)
based optimization » whale optimization (Expand Search)
library based » laboratory based (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 based » _ based (Expand Search), 1 based (Expand Search), ai based (Expand Search)
process classification » protein classification (Expand Search), proposed classification (Expand Search), forest classification (Expand Search)
based optimization » whale optimization (Expand Search)
library based » laboratory based (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 based » _ based (Expand Search), 1 based (Expand Search), ai based (Expand Search)
-
101
LITNET-2020 data splitting approach.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
102
Transformation of symbolic features in NSL-KDD.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
103
-
104
Parameter settings.
Published 2024“…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. It has proven its efficacy in tackling diverse problems across various fields and real-world applications. …”
-
105
Presentation_1_Modified GAN Augmentation Algorithms for the MRI-Classification of Myocardial Scar Tissue in Ischemic Cardiomyopathy.PPTX
Published 2021“…Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. …”
-
106
Data_Sheet_1_Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer.pdf
Published 2019“…The Digital Annealer's algorithm is currently based on simulated annealing; however, it differs from it in its utilization of an efficient parallel-trial scheme and a dynamic escape mechanism. …”
-
107
Quadratic polynomial in 2D image plane.
Published 2024“…The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
108
-
109
Librerías de odio según intensidad y tipos en medios informativos digitales en España (Hate speech libraries according to intensity and types in digital news media in Spain)
Published 2024“…</p><p dir="ltr">The <a href="https://doi.org/10.6084/m9.figshare.26085700.v1" rel="noreferrer" target="_blank"><b>database used</b></a> to train the classification algorithm models developed in the Hatemedia project identified 6,273 simple and compound lemmas associated with messages with hate expressions identified by each of the intensities and types of hate studied in this project. …”
-
110
Aluminum alloy industrial materials defect
Published 2024“…</p><h2>Description of the data and file structure</h2><p dir="ltr">This is a project based on the YOLOv8 enhanced algorithm for aluminum defect classification and detection tasks.…”
-
111
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
112
-
113
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
Published 2020“…Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving 2 or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”
-
114
GSE96058 information.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
115
The performance of classifiers.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
116
-
117
Bayesian sequential design for sensitivity experiments with hybrid responses
Published 2023“…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …”
-
118
Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn’s disease
Published 2025“…<i>Z</i> score standardization and independent sample <i>t</i> test were applied to identify optimal predictive features, which were then utilized in seven ML algorithms for training and validation. …”
-
119
DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx
Published 2021“…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …”
-
120
Steps in the extraction of 14 coordinates from the CT slices for the curved MPR.
Published 2025“…Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …”