يعرض 1 - 20 نتائج من 37 نتيجة بحث عن '(( library based process optimisation algorithm ) OR ( library based well optimization algorithm ))', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure حسب Zhihan Xu (17049357)

    منشور في 2025
    "…With the fine-grained programmable architecture of FPGAs, FPGAs are well-suited for accelerating HE ML inference. This project will leverage our novel algorithmic, architectural, and memory optimizations on FPGAs to develop a portable library to enable secure and trustworthy ML inference. …"
  6. 6

    Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure حسب Zhihan Xu (17049357)

    منشور في 2024
    "…With the fine-grained programmable architecture of FPGAs, FPGAs are well-suited for accelerating HE ML inference. This project will leverage our novel algorithmic, architectural, and memory optimizations on FPGAs to develop a portable library to enable secure and trustworthy ML inference. …"
  7. 7

    Diversity and specificity of lipid patterns in basal soil food web resources حسب Jakob Kühn (7288466)

    منشور في 2019
    "…In marine environments, multivariate optimization models (Quantitative Fatty Acid Signature Analysis) and Bayesian approaches (source-tracking algorithm) were established to predict the proportion of predator diets using lipids as tracers. …"
  8. 8

    <b>Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure</b> حسب Zhihan Xu (17049357)

    منشور في 2023
    "…With the fine-grained programmable architecture of FPGAs, FPGAs are well-suited for accelerating HE ML inference. This project will leverage our novel algorithmic, architectural, and memory optimizations on FPGAs to develop a portable library to enable secure and trustworthy ML inference. …"
  9. 9

    iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules حسب Denis N. Prada Gori (5798651)

    منشور في 2022
    "…Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). …"
  10. 10

    iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules حسب Denis N. Prada Gori (5798651)

    منشور في 2022
    "…Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). …"
  11. 11

    iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules حسب Denis N. Prada Gori (5798651)

    منشور في 2022
    "…Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). …"
  12. 12

    SHAP bar plot. حسب Meng Cao (105914)

    منشور في 2025
    "…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…"
  13. 13

    Sample screening flowchart. حسب Meng Cao (105914)

    منشور في 2025
    "…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…"
  14. 14

    Descriptive statistics for variables. حسب Meng Cao (105914)

    منشور في 2025
    "…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…"
  15. 15

    SHAP summary plot. حسب Meng Cao (105914)

    منشور في 2025
    "…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…"
  16. 16

    ROC curves for the test set of four models. حسب Meng Cao (105914)

    منشور في 2025
    "…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…"
  17. 17

    Display of the web prediction interface. حسب Meng Cao (105914)

    منشور في 2025
    "…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…"
  18. 18

    OpenACC pgfortran: substantial speedups and beyond for the O3 Condensation algorithm for determinants and estimation حسب Damien Mather (9636747)

    منشور في 2020
    "…We utilise intel MPI libraries and up to 4 of Mahuika’s P-100 GPUs per batch job and show (a) how substantial speedups can be had with four additional OpenACC compiler directives, and (b) how evolving the algorithm to optimise data locality and reduce process blocking can achieve further substantial speedup. …"
  19. 19
  20. 20

    PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery حسب Muzammil Kabier (21028487)

    منشور في 2025
    "…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …"