Search alternatives:
process optimization » model optimization (Expand Search)
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
library based » laboratory based (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a driven » ai driven (Expand Search), _ driven (Expand Search), a driver (Expand Search)
process optimization » model optimization (Expand Search)
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
library based » laboratory based (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a driven » ai driven (Expand Search), _ driven (Expand Search), a driver (Expand Search)
-
41
Data construction of the first and last rows in .
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. …”
-
42
Schematic diagram of PM model.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. …”
-
43
Schematic diagram of the atomic function .
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. …”
-
44
Multiple comparison of means - Tukey HSD.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. …”
-
45
Schematic diagram of the cut-and-mark operation.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. …”
-
46
Layout of hybrid flow shop scheduling.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. …”
-
47
Probe combines and as a 2-aggregation.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. …”
-
48
Scheduling Gantt chart for instance j10c10c6.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. …”
-
49
Scheduling Gantt chart for instance j30c5e10.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. …”
-
50
Box plot comparison on instance j30c5e10.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. …”
-
51
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…<div><p>An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. …”
-
52
-
53
-
54
Data_Sheet_1_A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms.docx
Published 2022“…</p>Materials and Methods<p>Leveraging data from electronic healthcare records and a unique MDRO universal screening program, we developed a data-driven modeling framework to predict MRSA, VRE, and CRE colonization upon intensive care unit (ICU) admission, and identified the associated socio-demographic and clinical factors using logistic regression (LR), random forest (RF), and XGBoost algorithms. …”
-
55
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
Published 2025“…</p>Methods<p>To address these challenges, we propose a novel AI-driven framework that incorporates two key methodological innovations: CardioSpectra, a structured sparse inference model, and Risk-Stratified Exertional Embedding (RSEE), a domain-specific representation learning strategy. …”
-
56
Data_Sheet_1_CLGBO: An Algorithm for Constructing Highly Robust Coding Sets for DNA Storage.docx
Published 2021“…In this study, we describe an enhanced gradient-based optimizer that includes the Cauchy and Levy mutation strategy (CLGBO) to construct DNA coding sets, which are used as primer and address libraries. …”
-
57
Confusion matrix.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
58
Parameter settings.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
59
Dynamic resource allocation process.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
60
Presentation_1_Optimization of the k-nearest-neighbors model for summer Arctic Sea ice prediction.pdf
Published 2023“…In this study, we utilized a sea ice concentration dataset obtained from satellite remote sensing and applied the k-nearest-neighbors (Ice-kNN) machine learning model to forecast the summer Arctic sea ice concentration and extent on 122 days prediction. Based on the physical characteristics of summer sea ice, different algorithms are employed to optimize the prediction model. …”