Showing 81 - 98 results of 98 for search '(( library based process optimization algorithm ) OR ( binary b process optimization algorithm ))*', query time: 0.62s Refine Results
  1. 81

    Presentation_1_Optimization of the k-nearest-neighbors model for summer Arctic Sea ice prediction.pdf by Yongcheng Lin (776525)

    Published 2023
    “…In this study, we utilized a sea ice concentration dataset obtained from satellite remote sensing and applied the k-nearest-neighbors (Ice-kNN) machine learning model to forecast the summer Arctic sea ice concentration and extent on 122 days prediction. Based on the physical characteristics of summer sea ice, different algorithms are employed to optimize the prediction model. …”
  2. 82

    Presentation_1_Optimization of the k-nearest-neighbors model for summer Arctic Sea ice prediction.pdf by Yongcheng Lin (776525)

    Published 2023
    “…In this study, we utilized a sea ice concentration dataset obtained from satellite remote sensing and applied the k-nearest-neighbors (Ice-kNN) machine learning model to forecast the summer Arctic sea ice concentration and extent on 122 days prediction. Based on the physical characteristics of summer sea ice, different algorithms are employed to optimize the prediction model. …”
  3. 83

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  4. 84
  5. 85
  6. 86
  7. 87
  8. 88

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …”
  9. 89
  10. 90
  11. 91

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows by Pierre-Alexis DELAROCHE (22092572)

    Published 2025
    “…Experimental Methodology Framework Local Processing Pipeline Architecture Data Flow: Storage I/O → Memory Buffer → CPU/GPU Processing → Cache Coherency → Storage I/O ├── Input Vector: mmap() system call for zero-copy file access ├── Processing Engine: OpenMP parallelization with NUMA-aware thread affinity ├── Memory Management: Custom allocator with hugepage backing └── Output Vector: Direct I/O bypassing kernel page cache Cloud Processing Pipeline Architecture Data Flow: Local Storage → Network Stack → TLS Tunnel → CDN Edge → Origin Server → Processing Grid → Response Pipeline ├── Upload Phase: TCP window scaling with congestion control algorithms ├── Network Layer: Application-layer protocol with adaptive bitrate streaming ├── Server-side Processing: Containerized microservices on Kubernetes orchestration ├── Load Balancing: Consistent hashing with geographic affinity routing └── Download Phase: HTTP/2 multiplexing with server push optimization Dataset Schema and Semantic Structure Primary Data Vectors Field Data Type Semantic Meaning Measurement Unit test_type Categorical Processing paradigm identifier {local_processing, cloud_processing} photo_count Integer Cardinality of input asset vector Count avg_file_size_mb Float64 Mean per-asset storage footprint Mebibytes (2^20 bytes) total_volume_gb Float64 Aggregate data corpus size Gigabytes (10^9 bytes) processing_time_sec Integer Wall-clock execution duration Seconds (SI base unit) cpu_usage_watts Float64 Thermal design power consumption Watts (Joules/second) ram_usage_mb Integer Peak resident set size Mebibytes network_upload_mb Float64 Egress bandwidth utilization Mebibytes energy_consumption_kwh Float64 Cumulative energy expenditure Kilowatt-hours co2_equivalent_g Float64 Carbon footprint estimation Grams CO₂e test_date ISO8601 Temporal execution marker RFC 3339 format hardware_config String Node topology identifier Alphanumeric encoding Statistical Distribution Characteristics The dataset exhibits non-parametric distribution patterns with significant heteroscedasticity across computational load vectors. …”
  12. 92

    Search for acetylcholinesterase inhibitors by computerized screening of approved drug compounds by T.A. Materova (22770138)

    Published 2025
    “…The screening process employed the SOL docking program with MMFF94 force field and genetic algorithms for global optimization, targeting the human AChE structure (PDB ID: 6O4W). …”
  13. 93

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles by Soham Savarkar (21811825)

    Published 2025
    “…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”
  14. 94

    Aluminum alloy industrial materials defect by Ying Han (20349093)

    Published 2024
    “…</p><h2>Description of the data and file structure</h2><p dir="ltr">This is a project based on the YOLOv8 enhanced algorithm for aluminum defect classification and detection tasks.…”
  15. 95

    Code by Baoqiang Chen (21099509)

    Published 2025
    “…</p><p><br></p><p dir="ltr">This architecture was implemented using the PyTorch library and trained using cross-entropy loss. The model was optimized to classify RNA sequences, achieving robust performance across multiple test sets.…”
  16. 96

    Core data by Baoqiang Chen (21099509)

    Published 2025
    “…</p><p><br></p><p dir="ltr">This architecture was implemented using the PyTorch library and trained using cross-entropy loss. The model was optimized to classify RNA sequences, achieving robust performance across multiple test sets.…”
  17. 97

    Table 1_Advances in the application of human-machine collaboration in healthcare: insights from China.docx by Wuzhen Wang (20675405)

    Published 2025
    “…“Human–machine collaboration” is based on an intelligent algorithmic system that utilizes the complementary strengths of humans and machines for data exchange, task allocation, decision making and collaborative work to provide more decision support. …”
  18. 98

    <b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043) by Erola Fenollosa (20977421)

    Published 2025
    “…</li><li>The dataframe of extracted colour features from all leaf images and lab variables (ecophysiological predictors and variables to be predicted)</li><li>Set of scripts used for image pre-processing, features extraction, data analytsis, visualization and Machine learning algorithms training, using ImageJ, R and Python.…”