يعرض 61 - 80 نتائج من 188 نتيجة بحث عن '(( library based process optimization algorithm ) OR ( binary base model optimization algorithm ))', وقت الاستعلام: 0.35s تنقيح النتائج
  1. 61

    After upsampling. حسب Balraj Preet Kaur (20370832)

    منشور في 2024
    "…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
  2. 62

    Results of Extra tree. حسب Balraj Preet Kaur (20370832)

    منشور في 2024
    "…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
  3. 63

    Gradient boosting classifier results. حسب Balraj Preet Kaur (20370832)

    منشور في 2024
    "…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
  4. 64
  5. 65

    ROC curves for the test set of four models. حسب Meng Cao (105914)

    منشور في 2025
    الموضوعات:
  6. 66
  7. 67

    The Pseudo-Code of the IRBMO Algorithm. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
  8. 68

    <i>hi</i>PRS algorithm process flow. حسب Michela C. Massi (14599915)

    منشور في 2023
    "…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. <b>(E)</b> Starting from the interaction at the top of <i>I</i><sub><i>δ</i></sub>, <i>hi</i>PRS constructs <i>I</i><sub><i>K</i></sub>, selecting <i>K</i> (where <i>K</i> is user-specified) terms through the greedy optimization of the ratio between MI (<i>relevance</i>) and a suitable measure of similarity for interactions (<i>redundancy)</i> (cf. …"
  9. 69
  10. 70
  11. 71
  12. 72
  13. 73
  14. 74
  15. 75
  16. 76
  17. 77
  18. 78
  19. 79
  20. 80