Showing 1 - 20 results of 63 for search '(( library based process optimization algorithm ) OR ( binary data led optimization algorithm ))', query time: 0.66s Refine Results
  1. 1

    <i>De Novo</i> Drug Design of Targeted Chemical Libraries Based on Artificial Intelligence and Pair-Based Multiobjective Optimization by Alberga Domenico (9356272)

    Published 2020
    “…In the present study, we conceived a novel pair-based multiobjective approach implemented in an adapted SMILES generative algorithm based on recurrent neural networks for the automated <i>de novo</i> design of new molecules whose overall features are optimized by finding the best trade-offs among relevant physicochemical properties (MW, logP, HBA, HBD) and additional similarity-based constraints biasing specific biological targets. …”
  2. 2

    An optimal solution for the HFS instance. by Xiang Tian (4369285)

    Published 2025
    “…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. …”
  3. 3
  4. 4

    Proposed Algorithm. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  5. 5

    Comparisons between ADAM and NADAM optimizers. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  6. 6

    Comparison based on hard instances from [79]. by Xiang Tian (4369285)

    Published 2025
    “…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. …”
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Fine-Tuning a Genetic Algorithm for CAMD: A Screening-Guided Warm Start by Yifan Wang (380120)

    Published 2025
    “…In response to these challenges, this work presents a method to fine-tune a genetic algorithm for CAMD. The proposed method builds on the COSMO-CAMD framework that utilizes a genetic algorithm for solving optimization-based molecular design problems and COSMO-RS for predicting physical properties of molecules. …”
  20. 20

    Fine-Tuning a Genetic Algorithm for CAMD: A Screening-Guided Warm Start by Yifan Wang (380120)

    Published 2025
    “…In response to these challenges, this work presents a method to fine-tune a genetic algorithm for CAMD. The proposed method builds on the COSMO-CAMD framework that utilizes a genetic algorithm for solving optimization-based molecular design problems and COSMO-RS for predicting physical properties of molecules. …”