بدائل البحث:
regression algorithm » regression algorithms (توسيع البحث), detection algorithm (توسيع البحث), selection algorithm (توسيع البحث)
codon optimization » wolf optimization (توسيع البحث)
library based » laboratory based (توسيع البحث)
based process » based processes (توسيع البحث), based probes (توسيع البحث), based proteins (توسيع البحث)
binary 2 » binary _ (توسيع البحث), binary b (توسيع البحث)
2 codon » _ codon (توسيع البحث)
regression algorithm » regression algorithms (توسيع البحث), detection algorithm (توسيع البحث), selection algorithm (توسيع البحث)
codon optimization » wolf optimization (توسيع البحث)
library based » laboratory based (توسيع البحث)
based process » based processes (توسيع البحث), based probes (توسيع البحث), based proteins (توسيع البحث)
binary 2 » binary _ (توسيع البحث), binary b (توسيع البحث)
2 codon » _ codon (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
Raw and processed (filtered and annotated) scRNAseq data
منشور في 2023"…Finally, the first 50 PCs were used as input for calculating the 10 nearest neighbours and the neighbourhood graph was then embedded into the two-dimensional space using the UMAP algorithm at a resolution of 2. Cell type annotation was performed using the Sig-annot semi-automated besca module, which is a signature- based hierarchical cell annotation method. …"
-
14
Survival regression with accelerated failure time model in XGBoost
منشور في 2022"…Nonlinear tree based machine learning algorithms as implemented in libraries such as XGBoost, scikit-learn, LightGBM, and CatBoost are often more accurate in practice than linear models. …"
-
15
-
16
CCS Predictor 2.0: An Open-Source Jupyter Notebook Tool for Filtering Out False Positives in Metabolomics
منشور في 2022"…Here, we report on a highly accurate machine learning algorithm (CCSP 2.0) in an open-source Jupyter Notebook format to predict CCS values based on linear support vector regression models. …"
-
17
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Experimental Methodology Framework Local Processing Pipeline Architecture Data Flow: Storage I/O → Memory Buffer → CPU/GPU Processing → Cache Coherency → Storage I/O ├── Input Vector: mmap() system call for zero-copy file access ├── Processing Engine: OpenMP parallelization with NUMA-aware thread affinity ├── Memory Management: Custom allocator with hugepage backing └── Output Vector: Direct I/O bypassing kernel page cache Cloud Processing Pipeline Architecture Data Flow: Local Storage → Network Stack → TLS Tunnel → CDN Edge → Origin Server → Processing Grid → Response Pipeline ├── Upload Phase: TCP window scaling with congestion control algorithms ├── Network Layer: Application-layer protocol with adaptive bitrate streaming ├── Server-side Processing: Containerized microservices on Kubernetes orchestration ├── Load Balancing: Consistent hashing with geographic affinity routing └── Download Phase: HTTP/2 multiplexing with server push optimization Dataset Schema and Semantic Structure Primary Data Vectors Field Data Type Semantic Meaning Measurement Unit test_type Categorical Processing paradigm identifier {local_processing, cloud_processing} photo_count Integer Cardinality of input asset vector Count avg_file_size_mb Float64 Mean per-asset storage footprint Mebibytes (2^20 bytes) total_volume_gb Float64 Aggregate data corpus size Gigabytes (10^9 bytes) processing_time_sec Integer Wall-clock execution duration Seconds (SI base unit) cpu_usage_watts Float64 Thermal design power consumption Watts (Joules/second) ram_usage_mb Integer Peak resident set size Mebibytes network_upload_mb Float64 Egress bandwidth utilization Mebibytes energy_consumption_kwh Float64 Cumulative energy expenditure Kilowatt-hours co2_equivalent_g Float64 Carbon footprint estimation Grams CO₂e test_date ISO8601 Temporal execution marker RFC 3339 format hardware_config String Node topology identifier Alphanumeric encoding Statistical Distribution Characteristics The dataset exhibits non-parametric distribution patterns with significant heteroscedasticity across computational load vectors. …"
-
18
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
منشور في 2025"…The described extracted features were used to predict leaf betalain content (µg per FW) using multiple machine learning regression algorithms (Linear regression, Ridge regression, Gradient boosting, Decision tree, Random forest and Support vector machine) using the <i>Scikit-learn</i> 1.2.1 library in Python (v.3.10.1) (list of hyperparameters used is given in <a href="#sup1" target="_blank">Supplementary Data S5</a>). …"