Showing 1 - 20 results of 20 for search '(( library based smart optimization algorithm ) OR ( binary may process optimization algorithm ))', query time: 0.63s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports by Olivier Q. Groot (9370461)

    Published 2020
    “…The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.…”
  14. 14
  15. 15

    Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx by Yupeng Li (507508)

    Published 2023
    “…However, diagnosing AD depends on clinicians’ subjective judgment, which may be missed or misdiagnosed sometimes.</p>Methods<p>This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. …”
  16. 16

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  17. 17
  18. 18

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …”
  19. 19

    Data_Sheet_1_The impact of family urban integration on migrant worker mental health in China.docx by Xiaotong Sun (6535064)

    Published 2024
    “…</p>Methods<p>This paper uses multi-dimensional indexes to measure family urban integration, covering economic, social and psychological dimensions, which may consider the complexity of integration. Utilizing a machine learning clustering algorithm, the research endeavors to assess the level of urban integration experienced by migrant workers and their respective families. …”
  20. 20

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows by Pierre-Alexis DELAROCHE (22092572)

    Published 2025
    “…Technical Architecture Overview Computational Environment Specifications Our experimental infrastructure leverages a heterogeneous multi-node computational topology encompassing three distinct hardware abstraction layers: Node Configuration Alpha (Intel-NVIDIA Heterogeneous Architecture) Processor: Intel Core i7-12700K (Alder Lake microarchitecture) - 12-core hybrid architecture (8 P-cores + 4 E-cores) - Base frequency: 3.6 GHz, Max turbo: 5.0 GHz - Cache hierarchy: 32KB L1I + 48KB L1D per P-core, 12MB L3 shared - Instruction set extensions: AVX2, AVX-512, SSE4.2 - Thermal design power: 125W (PL1), 190W (PL2) Memory Subsystem: 32GB DDR4-3200 JEDEC-compliant DIMM - Dual-channel configuration, ECC-disabled - Memory controller integrated within CPU die - Peak theoretical bandwidth: 51.2 GB/s GPU Accelerator: NVIDIA GeForce RTX 3070 (GA104 silicon) - CUDA compute capability: 8.6 - RT cores: 46 (2nd gen), Tensor cores: 184 (3rd gen) - Memory: 8GB GDDR6 @ 448 GB/s bandwidth - PCIe 4.0 x16 interface with GPU Direct RDMA support Node Configuration Beta (AMD Zen3+ Architecture) Processor: AMD Ryzen 7 5800X (Zen 3 microarchitecture) - 8-core monolithic design, simultaneous multithreading enabled - Base frequency: 3.8 GHz, Max boost: 4.7 GHz - Cache hierarchy: 32KB L1I + 32KB L1D per core, 32MB L3 shared - Infinity Fabric interconnect @ 1800 MHz - Thermal design power: 105W Memory Subsystem: 16GB DDR4-3600 overclocked configuration - Dual-channel with optimized subtimings (CL16-19-19-39) - Memory controller frequency: 1800 MHz (1:1 FCLK ratio) GPU Accelerator: NVIDIA GeForce GTX 1660 (TU116 silicon) - CUDA compute capability: 7.5 - Memory: 6GB GDDR5 @ 192 GB/s bandwidth - Turing shader architecture without RT/Tensor cores Node Configuration Gamma (Intel Raptor Lake High-Performance) Processor: Intel Core i9-13900K (Raptor Lake microarchitecture) - 24-core hybrid topology (8 P-cores + 16 E-cores) - P-core frequency: 3.0 GHz base, 5.8 GHz max turbo - E-core frequency: 2.2 GHz base, 4.3 GHz max turbo - Cache hierarchy: 36MB L3 shared, Intel Smart Cache technology - Thermal velocity boost with thermal monitoring Memory Subsystem: 64GB DDR5-5600 high-bandwidth configuration - Quad-channel topology with advanced error correction - Peak theoretical bandwidth: 89.6 GB/s GPU Accelerator: NVIDIA GeForce RTX 4080 (AD103 silicon) - Ada Lovelace architecture, CUDA compute capability: 8.9 - RT cores: 76 (3rd gen), Tensor cores: 304 (4th gen) - Memory: 16GB GDDR6X @ 716.8 GB/s bandwidth - PCIe 4.0 x16 with NVLink-ready topology Instrumentation and Telemetry Framework Power Consumption Monitoring Infrastructure Our energy profiling subsystem employs a multi-layered approach to capture granular power consumption metrics across the entire computational stack: Hardware Performance Counters (HPC): Intel RAPL (Running Average Power Limit) interface for CPU package power measurement with sub-millisecond resolution GPU Telemetry: NVIDIA Management Library (NVML) API for real-time GPU power draw monitoring via PCIe sideband signaling System-level PMU: Performance Monitoring Unit instrumentation leveraging MSR (Model Specific Register) access for architectural event sampling Network Interface Telemetry: SNMP-based monitoring of NIC power consumption during cloud upload/download phases Temporal Synchronization Protocol All measurement vectors utilize high-resolution performance counters (HPET) with nanosecond precision timestamps, synchronized via Network Time Protocol (NTP) to ensure temporal coherence across distributed measurement points. …”