Search alternatives:
process optimization » model optimization (Expand Search)
smart optimization » swarm optimization (Expand Search), art optimization (Expand Search), whale optimization (Expand Search)
library based » laboratory based (Expand Search)
based smart » based sars (Expand Search), based search (Expand Search)
may process » day process (Expand Search), key process (Expand Search), a process (Expand Search)
binary may » binary mask (Expand Search), binary image (Expand Search)
process optimization » model optimization (Expand Search)
smart optimization » swarm optimization (Expand Search), art optimization (Expand Search), whale optimization (Expand Search)
library based » laboratory based (Expand Search)
based smart » based sars (Expand Search), based search (Expand Search)
may process » day process (Expand Search), key process (Expand Search), a process (Expand Search)
binary may » binary mask (Expand Search), binary image (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports
Published 2020“…The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.…”
-
14
-
15
Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx
Published 2023“…However, diagnosing AD depends on clinicians’ subjective judgment, which may be missed or misdiagnosed sometimes.</p>Methods<p>This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. …”
-
16
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
17
-
18
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …”
-
19
Data_Sheet_1_The impact of family urban integration on migrant worker mental health in China.docx
Published 2024“…</p>Methods<p>This paper uses multi-dimensional indexes to measure family urban integration, covering economic, social and psychological dimensions, which may consider the complexity of integration. Utilizing a machine learning clustering algorithm, the research endeavors to assess the level of urban integration experienced by migrant workers and their respective families. …”
-
20
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
Published 2025“…Technical Architecture Overview Computational Environment Specifications Our experimental infrastructure leverages a heterogeneous multi-node computational topology encompassing three distinct hardware abstraction layers: Node Configuration Alpha (Intel-NVIDIA Heterogeneous Architecture) Processor: Intel Core i7-12700K (Alder Lake microarchitecture) - 12-core hybrid architecture (8 P-cores + 4 E-cores) - Base frequency: 3.6 GHz, Max turbo: 5.0 GHz - Cache hierarchy: 32KB L1I + 48KB L1D per P-core, 12MB L3 shared - Instruction set extensions: AVX2, AVX-512, SSE4.2 - Thermal design power: 125W (PL1), 190W (PL2) Memory Subsystem: 32GB DDR4-3200 JEDEC-compliant DIMM - Dual-channel configuration, ECC-disabled - Memory controller integrated within CPU die - Peak theoretical bandwidth: 51.2 GB/s GPU Accelerator: NVIDIA GeForce RTX 3070 (GA104 silicon) - CUDA compute capability: 8.6 - RT cores: 46 (2nd gen), Tensor cores: 184 (3rd gen) - Memory: 8GB GDDR6 @ 448 GB/s bandwidth - PCIe 4.0 x16 interface with GPU Direct RDMA support Node Configuration Beta (AMD Zen3+ Architecture) Processor: AMD Ryzen 7 5800X (Zen 3 microarchitecture) - 8-core monolithic design, simultaneous multithreading enabled - Base frequency: 3.8 GHz, Max boost: 4.7 GHz - Cache hierarchy: 32KB L1I + 32KB L1D per core, 32MB L3 shared - Infinity Fabric interconnect @ 1800 MHz - Thermal design power: 105W Memory Subsystem: 16GB DDR4-3600 overclocked configuration - Dual-channel with optimized subtimings (CL16-19-19-39) - Memory controller frequency: 1800 MHz (1:1 FCLK ratio) GPU Accelerator: NVIDIA GeForce GTX 1660 (TU116 silicon) - CUDA compute capability: 7.5 - Memory: 6GB GDDR5 @ 192 GB/s bandwidth - Turing shader architecture without RT/Tensor cores Node Configuration Gamma (Intel Raptor Lake High-Performance) Processor: Intel Core i9-13900K (Raptor Lake microarchitecture) - 24-core hybrid topology (8 P-cores + 16 E-cores) - P-core frequency: 3.0 GHz base, 5.8 GHz max turbo - E-core frequency: 2.2 GHz base, 4.3 GHz max turbo - Cache hierarchy: 36MB L3 shared, Intel Smart Cache technology - Thermal velocity boost with thermal monitoring Memory Subsystem: 64GB DDR5-5600 high-bandwidth configuration - Quad-channel topology with advanced error correction - Peak theoretical bandwidth: 89.6 GB/s GPU Accelerator: NVIDIA GeForce RTX 4080 (AD103 silicon) - Ada Lovelace architecture, CUDA compute capability: 8.9 - RT cores: 76 (3rd gen), Tensor cores: 304 (4th gen) - Memory: 16GB GDDR6X @ 716.8 GB/s bandwidth - PCIe 4.0 x16 with NVLink-ready topology Instrumentation and Telemetry Framework Power Consumption Monitoring Infrastructure Our energy profiling subsystem employs a multi-layered approach to capture granular power consumption metrics across the entire computational stack: Hardware Performance Counters (HPC): Intel RAPL (Running Average Power Limit) interface for CPU package power measurement with sub-millisecond resolution GPU Telemetry: NVIDIA Management Library (NVML) API for real-time GPU power draw monitoring via PCIe sideband signaling System-level PMU: Performance Monitoring Unit instrumentation leveraging MSR (Model Specific Register) access for architectural event sampling Network Interface Telemetry: SNMP-based monitoring of NIC power consumption during cloud upload/download phases Temporal Synchronization Protocol All measurement vectors utilize high-resolution performance counters (HPET) with nanosecond precision timestamps, synchronized via Network Time Protocol (NTP) to ensure temporal coherence across distributed measurement points. …”