Showing 1 - 20 results of 57 for search '(( library based web optimization algorithm ) OR ( binary based random optimization algorithm ))', query time: 0.57s Refine Results
  1. 1

    Display of the web prediction interface. by Meng Cao (105914)

    Published 2025
    “…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…”
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    SHAP bar plot. by Meng Cao (105914)

    Published 2025
    “…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…”
  7. 7

    Sample screening flowchart. by Meng Cao (105914)

    Published 2025
    “…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…”
  8. 8

    Descriptive statistics for variables. by Meng Cao (105914)

    Published 2025
    “…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…”
  9. 9

    SHAP summary plot. by Meng Cao (105914)

    Published 2025
    “…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…”
  10. 10

    ROC curves for the test set of four models. by Meng Cao (105914)

    Published 2025
    “…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…”
  11. 11

    Diversity and specificity of lipid patterns in basal soil food web resources by Jakob Kühn (7288466)

    Published 2019
    “…In marine environments, multivariate optimization models (Quantitative Fatty Acid Signature Analysis) and Bayesian approaches (source-tracking algorithm) were established to predict the proportion of predator diets using lipids as tracers. …”
  12. 12

    Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data by Changhun Kim (682542)

    Published 2022
    “…Therefore, the resampling algorithm employed should vary depending on the data distribution to achieve optimal classification performance. …”
  13. 13

    QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm by Z.Y. Algamal (5547620)

    Published 2020
    “…Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …”
  14. 14

    iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules by Denis N. Prada Gori (5798651)

    Published 2022
    “…Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). …”
  15. 15

    iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules by Denis N. Prada Gori (5798651)

    Published 2022
    “…Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). …”
  16. 16

    iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules by Denis N. Prada Gori (5798651)

    Published 2022
    “…Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). …”
  17. 17
  18. 18

    Flowchart scheme of the ML-based model. by Noshaba Qasmi (20405009)

    Published 2024
    “…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
  19. 19

    Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx by Veera Narayana Balabathina (22518524)

    Published 2025
    “…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”
  20. 20