Showing 1 - 20 results of 95 for search '(( library based work optimization algorithm ) OR ( binary _ robust optimization algorithm ))', query time: 0.50s Refine Results
  1. 1

    An optimal solution for the HFS instance. by Xiang Tian (4369285)

    Published 2025
    “…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
  2. 2
  3. 3
  4. 4
  5. 5

    Comparison based on hard instances from [79]. by Xiang Tian (4369285)

    Published 2025
    “…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
  6. 6
  7. 7

    Fine-Tuning a Genetic Algorithm for CAMD: A Screening-Guided Warm Start by Yifan Wang (380120)

    Published 2025
    “…The proposed method builds on the COSMO-CAMD framework that utilizes a genetic algorithm for solving optimization-based molecular design problems and COSMO-RS for predicting physical properties of molecules. …”
  8. 8

    Fine-Tuning a Genetic Algorithm for CAMD: A Screening-Guided Warm Start by Yifan Wang (380120)

    Published 2025
    “…The proposed method builds on the COSMO-CAMD framework that utilizes a genetic algorithm for solving optimization-based molecular design problems and COSMO-RS for predicting physical properties of molecules. …”
  9. 9

    Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization by Sandeep Jagonda Patil (22048337)

    Published 2025
    “…By integrating Latent Encoder Coupled Generative Adversarial Network (LEGAN) optimized with Binary Emperor Penguin optimizer (BEPO), the scheme enhances routing efficiency and security. …”
  10. 10

    The Pseudo-Code of the IRBMO Algorithm. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  11. 11

    IRBMO vs. meta-heuristic algorithms boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  12. 12

    IRBMO vs. feature selection algorithm boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  13. 13
  14. 14

    QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm by Z.Y. Algamal (5547620)

    Published 2020
    “…Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …”
  15. 15

    A simple HFS instance. by Xiang Tian (4369285)

    Published 2025
    “…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
  16. 16

    The scheduling Gantt chart. by Xiang Tian (4369285)

    Published 2025
    “…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
  17. 17

    Structure and computational framework of IPMMPO. by Xiang Tian (4369285)

    Published 2025
    “…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
  18. 18

    Data types contained in and . by Xiang Tian (4369285)

    Published 2025
    “…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
  19. 19

    Data construction of the first and last rows in . by Xiang Tian (4369285)

    Published 2025
    “…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
  20. 20

    Schematic diagram of PM model. by Xiang Tian (4369285)

    Published 2025
    “…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”