Showing 101 - 115 results of 115 for search '(( library from based optimization algorithm ) OR ( binary based bayesian optimization algorithm ))', query time: 0.40s Refine Results
  1. 101

    Image_1_G2P Provides an Integrative Environment for Multi-model genomic selection analysis to improve genotype-to-phenotype prediction.jpeg by Qian Wang (32718)

    Published 2023
    “…G2P works as an integrative environment offering comprehensive, unbiased evaluation analyses of the 16 GS models, which may be run in parallel on high-performance computing clusters. Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. …”
  2. 102

    Image_2_G2P Provides an Integrative Environment for Multi-model genomic selection analysis to improve genotype-to-phenotype prediction.jpeg by Qian Wang (32718)

    Published 2023
    “…G2P works as an integrative environment offering comprehensive, unbiased evaluation analyses of the 16 GS models, which may be run in parallel on high-performance computing clusters. Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. …”
  3. 103

    DataSheet_1_G2P Provides an Integrative Environment for Multi-model genomic selection analysis to improve genotype-to-phenotype prediction.docx by Qian Wang (32718)

    Published 2023
    “…G2P works as an integrative environment offering comprehensive, unbiased evaluation analyses of the 16 GS models, which may be run in parallel on high-performance computing clusters. Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. …”
  4. 104

    Image_3_G2P Provides an Integrative Environment for Multi-model genomic selection analysis to improve genotype-to-phenotype prediction.jpeg by Qian Wang (32718)

    Published 2023
    “…G2P works as an integrative environment offering comprehensive, unbiased evaluation analyses of the 16 GS models, which may be run in parallel on high-performance computing clusters. Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. …”
  5. 105

    Table_4_G2P Provides an Integrative Environment for Multi-model genomic selection analysis to improve genotype-to-phenotype prediction.xlsx by Qian Wang (32718)

    Published 2023
    “…G2P works as an integrative environment offering comprehensive, unbiased evaluation analyses of the 16 GS models, which may be run in parallel on high-performance computing clusters. Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. …”
  6. 106

    Table_2_G2P Provides an Integrative Environment for Multi-model genomic selection analysis to improve genotype-to-phenotype prediction.xlsx by Qian Wang (32718)

    Published 2023
    “…G2P works as an integrative environment offering comprehensive, unbiased evaluation analyses of the 16 GS models, which may be run in parallel on high-performance computing clusters. Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. …”
  7. 107

    Table_1_G2P Provides an Integrative Environment for Multi-model genomic selection analysis to improve genotype-to-phenotype prediction.xlsx by Qian Wang (32718)

    Published 2023
    “…G2P works as an integrative environment offering comprehensive, unbiased evaluation analyses of the 16 GS models, which may be run in parallel on high-performance computing clusters. Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. …”
  8. 108

    Code by Baoqiang Chen (21099509)

    Published 2025
    “…</p><p><br></p><p dir="ltr">For the 5′ UTR library, we developed a Python script to extract sequences and Unique Molecular Identifiers (UMIs) from the FASTQ files. …”
  9. 109

    Core data by Baoqiang Chen (21099509)

    Published 2025
    “…</p><p><br></p><p dir="ltr">For the 5′ UTR library, we developed a Python script to extract sequences and Unique Molecular Identifiers (UMIs) from the FASTQ files. …”
  10. 110

    R‑BIND: An Interactive Database for Exploring and Developing RNA-Targeted Chemical Probes by Brittany S. Morgan (7554242)

    Published 2019
    “…These tools and resources can be used to design small molecule libraries, optimize lead ligands, or select targets, probes, assays, and control experiments. …”
  11. 111

    R‑BIND: An Interactive Database for Exploring and Developing RNA-Targeted Chemical Probes by Brittany S. Morgan (7554242)

    Published 2019
    “…These tools and resources can be used to design small molecule libraries, optimize lead ligands, or select targets, probes, assays, and control experiments. …”
  12. 112

    R‑BIND: An Interactive Database for Exploring and Developing RNA-Targeted Chemical Probes by Brittany S. Morgan (7554242)

    Published 2019
    “…These tools and resources can be used to design small molecule libraries, optimize lead ligands, or select targets, probes, assays, and control experiments. …”
  13. 113

    Minisymposterium: Muq-Hippylib: A Bayesian Inference Software Framework Integrating Data with Complex Predictive Models under Uncertainty by Ki-Tae Kim (10184066)

    Published 2021
    “…The central questions are: How do we optimally learn from data through the lens of models? …”
  14. 114

    SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion by Omar Ghattas (4387300)

    Published 2020
    “…The central questions are: How do we optimally learn from data through the lens of models? …”
  15. 115

    SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion by Umberto Villa (8400192)

    Published 2020
    “…The central questions are: How do we optimally learn from data through the lens of models? …”