Search alternatives:
bayesian optimization » based optimization (Expand Search)
phase optimization » whale optimization (Expand Search), based optimization (Expand Search), path optimization (Expand Search)
a bayesian » _ bayesian (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
bayesian optimization » based optimization (Expand Search)
phase optimization » whale optimization (Expand Search), based optimization (Expand Search), path optimization (Expand Search)
a bayesian » _ bayesian (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
-
1
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
2
-
3
-
4
Bayesian sequential design for sensitivity experiments with hybrid responses
Published 2023“…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …”
-
5
-
6
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
Published 2025“…Machine learning regression algorithms were trained to predict betalain accumulation from digital images, outperforming classic spectroradiometer measurements. …”
-
7
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
Published 2025“…Reproducibility Framework Container Orchestration # Kubernetes deployment manifest for reproducible environment apiVersion: apps/v1 kind: Deployment metadata: name: energy-benchmark-pod spec: replicas: 1 selector: matchLabels: app: benchmark-runner template: metadata: labels: app: benchmark-runner spec: nodeSelector: hardware.profile: "high-performance" containers: - name: benchmark-container image: albumforge/energy-benchmark:v2.1.3 resources: requests: cpu: "8000m" memory: "16Gi" nvidia.com/gpu: 1 limits: cpu: "16000m" memory: "32Gi" env: - name: MEASUREMENT_PRECISION value: "high" - name: POWER_SAMPLING_RATE value: "1000" # 1kHz sampling Dependency Management FROM ubuntu:22.04-cuda11.8-devel RUN apt-get update && apt-get install -y \ perf-tools \ powertop \ intel-gpu-tools \ nvidia-smi \ cpupower \ msr-tools \ && rm -rf /var/lib/apt/lists/* COPY requirements.txt /opt/ RUN pip install -r /opt/requirements.txt Usage Examples and API Documentation Python Data Analysis Interface import pandas as pd import numpy as np from scipy import stats import matplotlib.pyplot as plt import seaborn as sns # Load dataset with optimized dtypes for memory efficiency df = pd.read_csv('ecological_benchmark_dataset.csv', dtype={'hardware_config': 'category', 'test_type': 'category'}) # Compute energy efficiency metrics df['energy_per_photo'] = df['energy_consumption_kwh'] / df['photo_count'] df['co2_per_gigabyte'] = df['co2_equivalent_g'] / df['total_volume_gb'] # Statistical analysis with confidence intervals local_energy = df[df['test_type'] == 'local_processing']['energy_consumption_kwh'] cloud_energy = df[df['test_type'] == 'cloud_processing']['energy_consumption_kwh'] t_stat, p_value = stats.ttest_ind(local_energy, cloud_energy) effect_size = (cloud_energy.mean() - local_energy.mean()) / np.sqrt((cloud_energy.var() + local_energy.var()) / 2) print(f"Statistical significance: p = {p_value:.2e}") print(f"Cohen's d effect size: {effect_size:.3f}") R Statistical Computing Environment library(tidyverse) library(lme4) # Linear mixed-effects models library(ggplot2) library(corrplot) # Load and preprocess data df <- read_csv("ecological_benchmark_dataset.csv") %>% mutate( test_type = factor(test_type), hardware_config = factor(hardware_config), log_energy = log(energy_consumption_kwh), efficiency_ratio = energy_consumption_kwh / processing_time_sec ) # Mixed-effects regression model accounting for hardware heterogeneity model <- lmer(log_energy ~ test_type + log(photo_count) + (1|hardware_config), data = df) # Extract model coefficients with confidence intervals summary(model) confint(model, method = "Wald") Advanced Analytics and Machine Learning Integration Predictive Modeling Framework from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.model_selection import cross_val_score, GridSearchCV from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import mean_absolute_error, r2_score # Feature engineering pipeline def create_feature_matrix(df): features = df[['photo_count', 'avg_file_size_mb', 'total_volume_gb']].copy() # Polynomial features for capturing non-linear relationships features['photo_count_squared'] = features['photo_count'] ** 2 features['size_volume_interaction'] = features['avg_file_size_mb'] * features['total_volume_gb'] # Hardware configuration encoding le = LabelEncoder() features['hardware_encoded'] = le.fit_transform(df['hardware_config']) return features # Energy consumption prediction model X = create_feature_matrix(df) y = df['energy_consumption_kwh'] # Hyperparameter optimization param_grid = { 'n_estimators': [100, 200, 500], 'max_depth': [10, 20, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] } rf_model = RandomForestRegressor(random_state=42) grid_search = GridSearchCV(rf_model, param_grid, cv=5, scoring='neg_mean_absolute_error') grid_search.fit(X, y) print(f"Best cross-validation score: {-grid_search.best_score_:.6f}") print(f"Optimal hyperparameters: {grid_search.best_params_}") Carbon Footprint Calculation Methodology Emission Factor Coefficients Carbon intensity calculations employ region-specific emission factors from the International Energy Agency (IEA) database: EMISSION_FACTORS = { 'EU_AVERAGE': 0.276, # kg CO₂/kWh (European Union average 2024) 'FRANCE': 0.057, # kg CO₂/kWh (Nuclear-dominant grid) 'GERMANY': 0.485, # kg CO₂/kWh (Coal transition period) 'NORWAY': 0.013, # kg CO₂/kWh (Hydroelectric dominant) 'GLOBAL_AVERAGE': 0.475 # kg CO₂/kWh (Global weighted average) } def calculate_carbon_footprint(energy_kwh: float, region: str = 'EU_AVERAGE') -> float: """ Calculate CO₂ equivalent emissions using lifecycle assessment methodology Args: energy_kwh: Energy consumption in kilowatt-hours region: Geographic region for emission factor selection Returns: CO₂ equivalent emissions in grams """ emission_factor = EMISSION_FACTORS.get(region, EMISSION_FACTORS['GLOBAL_AVERAGE']) co2_kg = energy_kwh * emission_factor return co2_kg * 1000 # Convert to grams Citation and Attribution This dataset is released under Creative Commons Attribution 4.0 International (CC BY 4.0) license. …”