Search alternatives:
structure optimization » structural optimization (Expand Search), structure determination (Expand Search)
warm optimization » swarm optimization (Expand Search), art optimization (Expand Search), whale optimization (Expand Search)
layer structure » layered structure (Expand Search), age structure (Expand Search), factor structure (Expand Search)
linear layer » inner layer (Expand Search), smear layer (Expand Search)
binary task » binary mask (Expand Search)
structure optimization » structural optimization (Expand Search), structure determination (Expand Search)
warm optimization » swarm optimization (Expand Search), art optimization (Expand Search), whale optimization (Expand Search)
layer structure » layered structure (Expand Search), age structure (Expand Search), factor structure (Expand Search)
linear layer » inner layer (Expand Search), smear layer (Expand Search)
binary task » binary mask (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
Comparison of optimization results.
Published 2025“…The process employs Maximum Second-order Cyclostationary Blind Deconvolution (CYCBD) to filter out noise from the vibration signals emitted by bearings; secondly, considering the issue with the conventional Harris Hawks Optimization (HHO) algorithm which tends to prematurely converge to local optima, the differential evolution mutation operator is introduced and the escape energy factor is improved from linear to nonlinear in IHHO; then, a double-layer network model based on DBN-ELM is proposed, to avoid the number of hidden layer nodes of DBN from human experience interference, and IHHO is used to optimize DBN structure, which is denoted as IHHO-DBN-ELM method; with the optimal structure is obtained by using a combined IHHO optimized DBN and ELM; in conclusion, the proposed IHHO-DBN-ELM approach is applied to the bearing fault detection using the Western Reserve University’s bearing fault dataset. …”
-
12
The structure of RBM.
Published 2025“…The process employs Maximum Second-order Cyclostationary Blind Deconvolution (CYCBD) to filter out noise from the vibration signals emitted by bearings; secondly, considering the issue with the conventional Harris Hawks Optimization (HHO) algorithm which tends to prematurely converge to local optima, the differential evolution mutation operator is introduced and the escape energy factor is improved from linear to nonlinear in IHHO; then, a double-layer network model based on DBN-ELM is proposed, to avoid the number of hidden layer nodes of DBN from human experience interference, and IHHO is used to optimize DBN structure, which is denoted as IHHO-DBN-ELM method; with the optimal structure is obtained by using a combined IHHO optimized DBN and ELM; in conclusion, the proposed IHHO-DBN-ELM approach is applied to the bearing fault detection using the Western Reserve University’s bearing fault dataset. …”
-
13
The network structure of DBN-ELM.
Published 2025“…The process employs Maximum Second-order Cyclostationary Blind Deconvolution (CYCBD) to filter out noise from the vibration signals emitted by bearings; secondly, considering the issue with the conventional Harris Hawks Optimization (HHO) algorithm which tends to prematurely converge to local optima, the differential evolution mutation operator is introduced and the escape energy factor is improved from linear to nonlinear in IHHO; then, a double-layer network model based on DBN-ELM is proposed, to avoid the number of hidden layer nodes of DBN from human experience interference, and IHHO is used to optimize DBN structure, which is denoted as IHHO-DBN-ELM method; with the optimal structure is obtained by using a combined IHHO optimized DBN and ELM; in conclusion, the proposed IHHO-DBN-ELM approach is applied to the bearing fault detection using the Western Reserve University’s bearing fault dataset. …”
-
14
-
15
-
16
-
17
-
18
-
19
-
20