Search alternatives:
based optimization » whale optimization (Expand Search)
cell optimization » field optimization (Expand Search), wolf optimization (Expand Search), lead optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
lines based » lens based (Expand Search), genes based (Expand Search), lines used (Expand Search)
based based » based case (Expand Search), based basis (Expand Search), ranked based (Expand Search)
based optimization » whale optimization (Expand Search)
cell optimization » field optimization (Expand Search), wolf optimization (Expand Search), lead optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
lines based » lens based (Expand Search), genes based (Expand Search), lines used (Expand Search)
based based » based case (Expand Search), based basis (Expand Search), ranked based (Expand Search)
-
21
ROC comparison of machine learning algorithm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
22
-
23
-
24
Cell fishing: A similarity based approach and machine learning strategy for multiple cell lines-compound sensitivity prediction
Published 2019“…<div><p>The prediction of cell-lines sensitivity to a given set of compounds is a very important factor in the optimization of in-vitro assays. …”
-
25
Optimizing Pharmacokinetic Property Prediction Based on Integrated Datasets and a Deep Learning Approach
Published 2020“…In this study, we considered both dataset and algorithm optimization to address the challenge of predicting OBA-related molecular properties. …”
-
26
Optimizing Pharmacokinetic Property Prediction Based on Integrated Datasets and a Deep Learning Approach
Published 2020“…In this study, we considered both dataset and algorithm optimization to address the challenge of predicting OBA-related molecular properties. …”
-
27
Optimizing Pharmacokinetic Property Prediction Based on Integrated Datasets and a Deep Learning Approach
Published 2020“…In this study, we considered both dataset and algorithm optimization to address the challenge of predicting OBA-related molecular properties. …”
-
28
-
29
QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm
Published 2020“…Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …”
-
30
Predicting patient drug response from cell-line methylation profiles for Temozolomide (n = 85).
Published 2021Subjects: -
31
Best optimizer results of Lightbgm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
32
Best optimizer results of Adaboost.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
33
Best optimizer results of Lightbgm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
34
Random forest with hyperparameter optimization.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
35
Best optimizer results of KNN.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
36
Best optimizer results of KNN.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
37
-
38
-
39
-
40
Best optimizer results of Decision tree.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”